The Java™
L anguage Specification
Third Edition

The Java™ Series

The Java™ Programming L anguage
Ken Arnold, James Gosling and David Holmes
ISBN 0-201-70433-1

The Java™ L anguage Specification Third Edition
James Godling, Bill Joy, Guy Steele and Gilad Bracha
ISBN 0-321-24678-0

The Java™ Virtual Machine Specification Second Edition
Tim Lindholm and Frank Yellin
ISBN 0-201-43294-3

The Java™ Application Programming I nterface,
Volume 1. Core Packages

James Gosdling, Frank Yellin, and the Java Team
ISBN 0-201-63452-X

The Java™ Application Programming I nterface,
Volume 2: Window Toolkit and Applets

James Godling, Frank Y ellin, and the Java Team
ISBN 0-201-63459-7

TheJava™ Tutorial: Object-Oriented Programming for the Internet
Mary Campione and Kathy Walrath
ISBN 0-201-63454-6

TheJava™ Class Libraries: An Annotated Reference
Patrick Chan and Rosanna Lee
ISBN 0-201-63458-9

TheJava™ FAQ: Frequently Asked Questions
Jonni Kanerva
ISBN 0-201-63456-2

The Java™
L anguage Specification
Third Edition

James Gosling
Bill Joy
Guy Steele
Gilad Bracha

A
A A 4
ADDISON-WESLEY

Boston - San Francisco - New York - Toronto - Montreal
London - Munich - Paris. Madrid
Capetown - Sydney - Tokyo - Singapore - Mexico City

The Java Language Specification

Copyright © 1996-2005 Sun Microsystems, Inc.

4150 Network Circle, Santa Clara, California 95054 U.S.A.
All rights reserved.

Duke logo™ designed by Joe Palrang.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and
FAR 52.227-19.

The release described in this manua may be protected by one or more U.S. patents,
foreign patents, or pending applications.

Sun Microsystems, Inc. (SUN) hereby grants to you afully paid, nonexclusive, nontrans-
ferable, perpetual, worldwide limited license (without the right to sublicense) under
SUN's intellectual property rights that are essential to practice this specification. This
license allows and is limited to the creation and distribution of clean room implementa-
tions of this specification that: (i) include a complete implementation of the current ver-
sion of this specification without subsetting or supersetting; (ii) implement all the
interfaces and functionality of the required packages of the Java™ 2 Platform, Standard
Edition, as defined by SUN, without subsetting or supersetting; (iii) do not add any addi-
tional packages, classes, or interfaces to the java* or javax.* packages or their subpack-
ages; (iv) pass al test suites relating to the most recent published version of the
specification of the Java™ 2 Platform, Standard Edition, that are available from SUN six
(6) months prior to any beta release of the clean room implementation or upgrade thereto;
(v) do not derive from SUN source code or binary materials; and (vi) do not include any
SUN source code or binary materials without an appropriate and separate license from
SUN.

Sun, Sun Microsystems, the Sun logo, Solaris, Java, JavaScript, JDK, and all Java-based
trademarks or logos are trademarks or registered trademarks of Sun Microsystems, Inc.
UNIX® isaregistered trademark of The Open Group in the United States and other coun-
tries. Apple and Dylan are trademarks of Apple Computer, Inc. All other product names
mentioned herein are the trademarks of their respective owners.

THIS PUBLICATION IS PROVIDED “AS IS WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPO-
GRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFOR-
MATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Credits and permissions for quoted material appear in a separate section on page 649.

Vi

Text printed on recycled and acid-free paper

ISBN 0-321-24678-0
123456789-MA-99989796
First printing, May 2005

“When | use aword,” Humpty Dumpty said,
in rather a scornful tone, “it means just what |
choose it to mean—neither more nor less”

“The question is,” said Alice, “whether you
can make words mean so many different things”

“The question is,” said Humpty Dumpty,
“which is to be master—that’s al.”

—L ewis Carroll, Through the Looking Glass

Preface X X | | |

Prefaceto the Second Edition X X V | |

Prefacetothe Third Edition X X X |

I ntroduction 1

11 ExamplePrograms5

1.2 Notation 6

1.3 Reationship to Predefined Classes and Interfaces 6
14 References 6

Grammars9

2.1 Context-Free Grammars 9

2.2 The Lexica Grammar 9

2.3 The Syntactic Grammar 10

2.4 Grammar Notation 10

Lexical Structure 13

31
3.2
3.3
34
35
3.6
3.7
3.8
39
3.10

311
3.12

Unicode 13

Lexical Trangdations 14

Unicode Escapes 15

Line Terminators 16

Input Elements and Tokens 17
White Space 18

Comments 18

Identifiers 19

Keywords 21

Literals21

3.10.1 Integer Literals 22

3.10.2 Floating-Point Literals 24
3.10.3 Boolean Literals 26
3.10.4 Character Literals 26
3.10.5 String Literals 28

3.10.6 Escape Sequences for Character and String Literals 30
3.10.7 The Null Literal 30
Separators 31

Operators 31

Types, Values, and Variables 33

4.1
4.2

The Kinds of Types and Values 34
Primitive Types and Values 34

421 Integra Typesand Vaues 35
4.2.2 Integer Operations 36

4.3

4.4
45

4.6
4.7
4.8
4.9
4.10

411
412

The Java Language Specification

4.2.3 Floating-Point Types, Formats, and Values 37
4.2.4 Floating-Point Operations 40
425 Theboolean Type and boolean Values 43
Reference Types and Values 44
431 Objects45
4.3.2 TheClass Object 47
4.3.3 TheClass String 48
4.3.4 When Reference Types Are the Same 49
Type Variables 49
Parameterized Types 51
451 Type Arguments and Wildcards 52

4511 Type Argument Containment and Equivalence 55
45.2 Members and Constructors of Parameterized Types 55
Type Erasure 56
Reifiable Types 56
Raw Types 57
Intersection Types 62
Subtyping 63
410.1 Subtyping among Primitive Types 63
4.10.2 Subtyping among Class and Interface Types 63
4.10.3 Subtyping among Array Types 64
Where Types Are Used 65
Variables 67
4.12.1 Variablesof Primitive Type 67
4.12.2 Variables of Reference Type 67

4.12.2.1 Heap Pollution 68
4.12.3 Kindsof Variables 69
4.12.4 fina Variables 71
4125 |Initia Values of Variables 71
4126 Types, Classes, and Interfaces 73

Conversions and Promotions 77

51

52
53

Kinds of Conversion 80

5.1.1 Identity Conversions 80

512 Widening Primitive Conversion 80
5.1.3 Narrowing Primitive Conversions 82
5.1.4 Widening and Narrowing Primitive Conversions 84
5.15 Widening Reference Conversions 85
516 Narrowing Reference Conversions 85
5.1.7 Boxing Conversion 86

5.1.8 Unboxing Conversion 88

5.1.9 Unchecked Conversion 89

5.1.10 Capture Conversion 89

5.1.11 String Conversions 92

5.1.12 Forbidden Conversions 92

5.1.13 Value Set Conversion 92

Assignment Conversion 93

Method Invocation Conversion 99

54 String Conversion 101
5,5 Casting Conversion 101
56 Numeric Promotions 108
5.6.1 Unary Numeric Promotion 108
5.6.2 Binary Numeric Promotion 110
Names 113
6.1 Declarations 114
6.2 Namesand ldentifiers 115
6.3 Scopeof aDeclaration 117
6.3.1 Shadowing Declarations 119
6.3.2 Obscured Declarations 122
6.4 Membersand Inheritance 122
6.4.1 The Members of Type Variables, Parameterized Types, Raw Types and
Intersection Types 122
6.4.2 The Members of aPackage 122
6.4.3 The Members of aClass Type 123
6.4.4 The Members of an Interface Type 124
6.45 TheMembers of an Array Type 125
6.5 Determining the Meaning of a Name 126
6.5.1 Syntactic Classification of a Name According to Context 127
6.5.2 Reclassification of Contextually Ambiguous Names 129
6.5.3 Meaning of Package Names 131
6.5.3.1 Simple Package Names 131
6.5.3.2 Qualified Package Names 132
6.54 Meaning of PackageOr TypeNames 132
6.54.1 Simple PackageOr TypeNames 132
6.5.4.2 Qualified PackageOr TypeNames 132
6.55 Meaning of Type Names 132
6.55.1 Simple Type Names 132
6.55.2 Qualified Type Names 132
6.5.6 Meaning of Expression Names 134
6.5.6.1 Simple Expression Names 134
6.5.6.2 Qualified Expression Names 135
6.5.7 Meaning of Method Names 137
6.5.7.1 Simple Method Names 137
6.5.7.2 Qualified Method Names 137
6.6 Access Control 138

6.6.1
6.6.2

6.6.3
6.6.4
6.6.5
6.6.6
6.6.7
6.6.8

Determining Accessibility 138

Details on protected Access 139

6.6.2.1 Accesstoaprotected Member 139

6.6.2.2 Qualified Accessto aprotected Constructor 140
An Example of Access Control 140

Example: Accessto public and Non-public Classes 141
Example: Default-Access Fields, Methods, and Constructors 142
Example: public Fields, Methods, and Constructors 143
Example: protected Fields, Methods, and Constructors 143
Example: private Fields, Methods, and Constructors 144

Xi

Xii

The Java Language Specification

6.7 Fully Qualified Names and Canonical Names 145
6.8 Naming Conventions 146
6.8.1 Package Names 147
6.8.2 Classand Interface Type Names 147
6.8.3 Type Variable Names 148
6.8.4 Method Names 149
6.85 Field Names 150
6.8.6 Constant Names 150
6.8.7 Local Variable and Parameter Names 151
Packages 153
7.1 Package Members 154
7.2 Host Support for Packages 155
721 Storing Packagesin a File System 155
7.2.2 Storing Packagesin a Database 157
7.3 Compilation Units 157
7.4 Package Declarations 158
74.1 Named Packages 158
7411 Package Annotations 158
7.4.2 Unnamed Packages 159
7.4.3 Observability of aPackage 160
744 Scope of aPackage Declaration 160
7.5 Import Declarations 160
751 Single-Type-Import Declaration 161
752 Type-Import-on-Demand Declaration 163
75.3 Single Static Import Declaration 164
7.5.4 Static-lmport-on-Demand Declaration 165
7.5.5 Automatic Imports 165
756 A Strange Example 165
7.6 Top Level Type Declarations 166
7.7 Unique Package Names 169
Classes 173
8.1 ClassDeclaration 175
811 ClassModifiers 175
8111 abstract Classes176
8.1.12 final Classes178
8.1.1.3 strictfp Classes178
8.1.2 Generic Classes and Type Parameters 178
8.1.3 Inner Classes and Enclosing Instances 181
8.1.4 Superclasses and Subclasses 184
8.15 Superinterfaces 186
8.1.6 ClassBody and Member Declarations 189
82 ClassMembers 190

821 Examplesof Inheritance 192
8211 Example: Inheritance with Default Access 192
8.2.1.2 Inheritance with pub1ic and protected 193

8.3

84

8.5

8.2.1.3 Inheritance with private 193
8.2.1.4 Accessing Members of Inaccessible Classes 194

Field Declarations 196

831

8.3.2

833

Field Modifiers 197

83.11 staticFields198

8.3.1.2 final Fields199

8.3.1.3 transient Fields 199

8.3.14 volatile Fields199

Initialization of Fields 201

8.3.21 Initidizersfor Class Variables 202

8.3.22 Initiaizersfor Instance Variables 202
8.3.23 Redtrictions on the use of Fields during Initialization 203
Examples of Field Declarations 205

8.3.3.1 Example: Hiding of Class Variables 205
8.3.3.2 Example: Hiding of Instance Variables 206
8.3.3.3 Example: Multiply Inherited Fields 207
8.3.34 Example: Re-inheritance of Fields 209

Method Declarations 209

84.1
84.2
84.3

844
8.4.5
8.4.6
8.4.7
8.4.8

849
8.4.10

Formal Parameters 210

Method Signature 212

Method Modifiers 214

84.3.1 abstract Methods 214

8.4.32 static Methods 216

8.4.3.3 final Methods 217

8.4.34 native Methods 218

8435 strictfp Methods 218

8.4.3.6 synchronized Methods 218

Generic Methods 220

Method Return Type 220

Method Throws 221

Method Body 223

Inheritance, Overriding, and Hiding 224

8.4.8.1 Overriding (by Instance Methods) 224

8.4.8.2 Hiding (by Class Methods) 225

8.4.83 Requirementsin Overriding and Hiding 225
8.4.8.4 Inheriting Methods with Override-Equivalent Signatures 228
Overloading 229

Examples of Method Declarations 230

8.4.10.1 Example: Overriding 230

8.4.10.2 Example: Overloading, Overriding, and Hiding 231
8.4.10.3 Example: Incorrect Overriding 231

8.4.10.4 Example: Overriding versus Hiding 232

8.4.10.5 Example: Invocation of Hidden Class Methods 234
8.4.10.6 Large Example of Overriding 234

8.4.10.7 Example: Incorrect Overriding because of Throws 236

Member Type Declarations 237

851
8.5.2

Modifiers 238
Static Member Type Declarations 238

Xiii

Xiv
8.6

8.7
8.8

8.9

The Java Language Specification

Instance Initializers 238
Static Initializers 239
Constructor Declarations 240

8.8.1 Formal Parameters and Formal Type Parameter 240
8.8.2 Constructor Signature 241
8.8.3 Constructor Modifiers 241
8.8.4 Generic Constructors 242
8.8.5 Constructor Throws 242
8.8.6 The Type of a Constructor 242
8.8.7 Constructor Body 242
8.8.7.1 Explicit Constructor Invocations 243
8.8.8 Constructor Overloading 246
8.8.9 Default Constructor 247
8.8.10 Preventing Instantiation of a Class 248
Enums 249

9 Interfaces 259
Interface Declarations 260

9.1

9.2
9.3

94

9.5
9.6

9.7

9.1.1 Interface Modifiers 260
9.1.1.1 abstract Interfaces 261
9.1.1.2 strictfp Interfaces 261
9.1.2 Generic Interfaces and Type Parameters 261
9.1.3 Superinterfaces and Subinterfaces 261
9.1.4 Interface Body and Member Declarations 263
9.15 Accessto Interface Member Names 263
Interface Members 263
Field (Constant) Declarations 264
9.3.1 Initialization of Fieldsin Interfaces 265
9.3.2 Examplesof Field Declarations 265

9.3.21 Ambiguous Inherited Fields 265
9.3.22 Multiply Inherited Fields 266

Abstract Method Declarations 266

9.4.1 Inheritance and Overriding 267

9.4.2 Overloading 268

9.4.3 Examplesof Abstract Method Declarations 269
9431 Example: Overriding 269
9432 Example: Overloading 269

Member Type Declarations 270

Annotation Types 270

9.6.1 Predefined Annotation Types 277

9.6.1.1 Target 278

9.6.1.2 Retention 278

9.6.1.3 Inherited 279

9.6.1.4 Override 279

9.6.1.5 Suppresswarnings 280
9.6.1.6 Deprecated 280

Annotations 281

10 Arrays287

11

12

10.1
10.2
10.3
10.4
105
10.6
10.7
10.8
10.9
10.10

Array Types 288

Array Variables 288

Array Creation 289

Array Access 289

Arrays. A Simple Example 290

Array Initializers 290

Array Members 292

Class Objects for Arrays 293

An Array of Charactersis Not a String 294
Array Store Exception 294

Exceptions 297

111
11.2

11.3

114
115

The Causes of Exceptions 298

Compile-Time Checking of Exceptions 299
11.2.1 Exception Analysis of Expressions 299
11.2.2 Exception Analysis of Statements 300
11.2.3 Exception Checking 301

11.2.4 Why Errors are Not Checked 301

11.25 Why Runtime Exceptions are Not Checked 301
Handling of an Exception 302

11.3.1 Exceptions are Precise 303

11.3.2 Handling Asynchronous Exceptions 303
An Example of Exceptions 304

The Exception Hierarchy 306

11.5.1 Loading and Linkage Errors 307

11.5.2 Virtual Machine Errors 307

Execution 309

121

122

12.3

124

125
12.6

Virtual Machine Start-Up 309

12.1.1 Loadthe Class Test 310

12.1.2 Link Test: Verify, Prepare, (Optionally) Resolve 310
12.1.3 Initialize Test: Execute Initializers 311

12.1.4 Invoke Test.main 312

Loading of Classes and Interfaces 312

12.2.1 The Loading Process 313

Linking of Classes and Interfaces 314

12.3.1 Verification of the Binary Representation 314
12.3.2 Preparation of aClass or Interface Type 315

12.3.3 Resolution of Symbolic References 315
Initialization of Classes and Interfaces 316

12.4.1 When Initialization Occurs 316

12.4.2 Detailed Initialization Procedure 319

12.4.3 Initialization: Implications for Code Generation 321
Creation of New Class Instances 322

Finalization of Class Instances 325

XV

XVi

13

126.1

12.6.2

The Java Language Specification

Implementing Finalization 326
12.6.1.1 Interaction with the Memory Model 328
Finalizer Invocations are Not Ordered 329

12.7 Unloading of Classes and Interfaces 330
12.8 Program Exit 331

Binary Compatibility 333
13.1 TheForm of aBinary 334
13.2 What Binary Compatibility Isand Is Not 339

13.3 Evolution of Packages 340
13.4 Evolution of Classes 340

1341
134.2
134.3
1344
13.4.5
13.4.6
13.4.7
13.4.8
134.9
13.4.10
13.4.11
13.4.12
13.4.13
13.4.14
13.4.15
13.4.16
13.4.17
13.4.18
13.4.19
13.4.20
13.4.21
13.4.22
13.4.23
13.4.24
13.4.25
13.4.26

abstract Classes 340

final Classes 341

public Classes 341

Superclasses and Superinterfaces 341
Class Formal Type Parameters 342

Class Body and Member Declarations 343
Access to Members and Constructors 344
Field Declarations 345

final Fields and Constants 347

static Fields 349

transient Fields 350

Method and Constructor Declarations 350
Method and Constructor Formal Type Parameters 351
Method and Constructor Parameters 352
Method Result Type 352

abstract Methods 352

final Methods 353

native Methods 354

static Methods 354

synchronized Methods 354

Method and Constructor Throws 354
Method and Constructor Body 354
Method and Constructor Overloading 355
Method Overriding 356

Static Initializers 356

Evolution of Enums 356

13.5 Evolution of Interfaces 356

1351
1352
1353
1354
13.5.5
13.5.6
13.5.7

public Interfaces 356

Superinterfaces 357

The Interface Members 357

Interface Formal Type Parameters 357
Field Declarations 358

Abstract Method Declarations 358
Evolution of Annotation Types 358

14 Blocksand Statements 359

15

141
14.2
14.3
144

14.5
14.6
14.7
14.8
14.9

14.10
14.11
14.12

14.13

14.14

14.15
14.16
14.17
14.18
14.19
14.20

14.21

Normal and Abrupt Completion of Statements 360

Blocks 361

Local Class Declarations 361

Local Variable Declaration Statements 363

1441 Loca Variable Declarators and Types 364

14.4.2 Scope of Local Variable Declarations 364

14.4.3 Shadowing of Names by Local Variables 367

14.4.4 Execution of Local Variable Declarations 367

Statements 368

The Empty Statement 370

Labeled Statements 370

Expression Statements 371

Theif Statement 372

149.1 Theif-then Statement 372

14.9.2 Theif-then—€lse Statement 372

The assert Statement 373

The switch Statement 377

The while Statement 380

14.12.1 Abrupt Completion 381

The do Statement 382

14.13.1 Abrupt Completion 383

14.13.2 Example of do statement 383

The for Statement 384

14.14.1 The basic for Statement 384
14.14.1.1 Initialization of for statement 385
14.14.1.2 Iteration of for statement 385
14.14.1.3 Abrupt Completion of for statement 386

14.14.2 The enhanced for statement 387

The break Statement 388

The continue Statement 390

The return Statement 392

The throw Statement 393

The synchronized Statement 395

The try statement 396

14.20.1 Execution of try—catch 398

14.20.2 Execution of try—catch—finally 399

Unreachable Statements 402

Expressions 409

151
15.2
153
154
155
156
15.7

Evaluation, Denotation, and Result 409

Variables as Vaues 410

Type of an Expression 410

FP-strict Expressions 411

Expressions and Run-Time Checks 411

Normal and Abrupt Completion of Evaluation 413
Evaluation Order 414

XVii

XViii

15.8

159

The Java Language Specification

15.7.1 Evauate Left-Hand Operand First 415
15.7.2 Evauate Operands before Operation 416
15.7.3 Evaluation Respects Parentheses and Precedence 417
15.7.4 Argument Lists are Evaluated L eft-to-Right 418
15.7.5 Evauation Order for Other Expressions 419
Primary Expressions 420
15.8.1 Lexical Literals 420
15.8.2 ClassLiteras421
15.8.3 this 421
1584 Quadlified this 422
15.8.5 Parenthesized Expressions 422
Class Instance Creation Expressions 423
15.9.1 Determining the Class being Instantiated 424
15.9.2 Determining Enclosing Instances 425
15.9.3 Choosing the Constructor and its Arguments 427
15.9.4 Run-time Evaluation of Class Instance Creation Expressions 428
15.9.5 Anonymous Class Declarations 429
15951 Anonymous Constructors 429
15.9.6 Example: Evaluation Order and Out-of-Memory Detection 430

15.10 Array Creation Expressions 431

1511

15.12

15.10.1 Run-time Evaluation of Array Creation Expressions 432
15.10.2 Example: Array Creation Evaluation Order 433
15.10.3 Example: Array Creation and Out-of-Memory Detection 434
Field Access Expressions 435
15.11.1 Field Access Using a Primary 435
15.11.2 Accessing Superclass Members using super 438
Method Invocation Expressions 440
15.12.1 Compile-Time Step 1: Determine Class or Interface to Search 440
15.12.2 Compile-Time Step 2: Determine Method Signature 442
15.12.2.1 Identify Potentially Applicable Methods 443
15.12.2.2 Phase 1: Identify Matching Arity Methods Applicable by Sub-
typing 445
15.12.2.3 Phase 2: Identify Matching Arity Methods Applicable by
Method Invocation Conversion 446
15.12.2.4 Phase 3: Identify Applicable Variable Arity Methods 446
15.12.2.5 Choosing the Most Specific Method 447
15.12.2.6 Method Result and Throws Types 450
15.12.2.7 Inferring Type Arguments Based on Actual Arguments 451
15.12.2.8 Inferring Unresolved Type Arguments 466
15.12.2.9 Examples 466
15.12.2.10 Example: Overloading Ambiguity 468
15.12.2.11 Example: Return Type Not Considered 468
15.12.2.12 Example: Compile-Time Resolution 469
15.12.3 Compile-Time Step 3: Is the Chosen Method Appropriate? 471
15.12.4 Runtime Evaluation of Method Invocation 473
15.12.4.1 Compute Target Reference (If Necessary) 473
15.12.4.2 Evaluate Arguments 474
15.12.4.3 Check Accessibility of Type and Method 475

15.13

15.14

15.15

15.16
15.17

15.18

15.19
15.20

1521

15.22

15.23
15.24
15.25
15.26

15.12.4.4 Locate Method to Invoke 476

15.12.4.5 Create Frame, Synchronize, Transfer Control 477
15.12.4.6 Example: Target Reference and Static Methods 479

15.12.4.7 Example: Evaluation Order 479
15.12.4.8 Example: Overriding 480
15.12.4.9 Example: Method Invocation using super 481
Array Access Expressions 482
15.13.1 Runtime Evaluation of Array Access 483
15.13.2 Examples: Array Access Evaluation Order 483
Postfix Expressions 485
15.14.1 Expression Names 485
15.14.2 Postfix Increment Operator ++ 485
15.14.3 Postfix Decrement Operator -- 486
Unary Operators 487
15.15.1 Prefix Increment Operator ++ 487
15.15.2 Prefix Decrement Operator -- 488
15.15.3 Unary Plus Operator + 489
15.15.4 Unary Minus Operator - 489
15.15.5 Bitwise Complement Operator ~ 490
15.15.6 Logical Complement Operator ! 490
Cast Expressions 490
Multiplicative Operators 491
15.17.1 Multiplication Operator * 492
15.17.2 Division Operator / 493
15.17.3 Remainder Operator % 495
Additive Operators 496
15.18.1 String Concatenation Operator + 497
15.18.1.1 String Conversion 497
15.18.1.2 Optimization of String Concatenation 498
15.18.1.3 Examples of String Concatenation 498
15.18.2 Additive Operators (+ and -) for Numeric Types 500
Shift Operators 502
Relational Operators 503
15.20.1 Numerical Comparison Operators <, <=, >, and >= 503
15.20.2 Type Comparison Operator instanceof 504
Equality Operators 505
15.21.1 Numerical Equality Operators == and != 506
15.21.2 Boolean Equality Operators == and != 507
15.21.3 Reference Equality Operators == and != 507
Bitwise and Logical Operators 508
15.22.1 Integer Bitwise Operators &, *, and | 508
15.22.2 Boolean Logical Operators &, *, and | 508
Conditional-And Operator & & 509
Conditional-Or Operator || 509
Conditional Operator ? : 510
Assignment Operators 512
15.26.1 Simple Assignment Operator = 513
15.26.2 Compound Assignment Operators 518

XiX

XX

The Java Language Specification

15.27 Expression 525
15.28 Constant Expression 525

16 Definite Assignment 527
16.1 Definite Assignment and Expressions 533

17

16.2

16.3
16.4
16.5
16.6
16.7
16.8
16.9

16.1.1
16.1.2
16.1.3
16.1.4
16.1.5
16.1.6
16.1.7
16.1.8
16.1.9
16.1.10

Boolean Constant Expressions 533

The Boolean Operator & & 533

The Boolean Operator || 534

The Boolean Operator ! 534

The Boolean Operator ? : 534

The Conditional Operator ? : 535
Other Expressions of Type boolean 535
Assignment Expressions 535

Operators ++ and -- 536

Other Expressions 536

Definite Assignment and Statements 538

16.2.1
16.2.2
16.2.3
16.24
16.2.5
16.2.6
16.2.7
16.2.8
16.2.9
16.2.10
16.2.11
16.2.12

16.2.13
16.2.14
16.2.15

Empty Statements 538

Blocks 538

Local Class Declaration Statements 539
Local Variable Declaration Statements 539
Labeled Statements 540

Expression Statements 540

if Statements 541

assert Statements 541

switch Statements 541

while Statements 542

do Statements 543

for Statements 543

16.2.12.1 Initialization Part 544

16.2.12.2 Incrementation Part 544

break, continue, return, and throw Statements 545
synchronized Statements 545

try Statements 545

Definite Assignment and Parameters 547

Definite Assignment and Array Initializers 547

Definite Assignment and Enum Constants 548

Definite Assignment and Anonymous Classes 548

Definite Assignment and Member Types 549

Definite Assignment and Static Initializers 549

Definite Assignment, Constructors, and Instance Initializers 550

Threads and L ocks 553

Locks 554

Notation in Examples 554

Incorrectly Synchronized Programs Exhibit Surprising Behaviors 555
Memory Model 557

171
17.2
17.3
174

1741

Shared Variables 558

18

175

17.6
17.7
17.8

17.9

17.4.2 Actions558

17.4.3 Programs and Program Order 560

17.4.4 Synchronization Order 561

17.45 Happens-before Order 561

17.4.6 Executions567

17.4.7 Well-Formed Executions 568

17.4.8 Executions and Causality Requirements 568
17.4.9 Observable Behavior and Nonterminating Executions 571
Final Field Semantics 573

1751 Semantics of Final Fields 575

17.5.2 Reading Fina Fields During Construction 576
17.5.3 Subsequent Modification of Final Fields 576
17.5.4 Write Protected Fields 578

Word Tearing 578

Non-atomic Treatment of double and Tong 579

Wait Sets and Notification 580

17.8.1 Wait 580

17.8.2 Notification 581

17.8.3 Interruptions 582

17.8.4 Interactions of Waits, Notification and Interruption 582
Sleep and Yield 583

Syntax 585

18.1

The Grammar of the Java Programming Language 585

| ndex 597

Credits 649

Colophon 651

XXi

B The Java Language Specification
XXI

Preface

T HE Java™ programming language was originally called Oak, and was designed
for use in embedded consumer-electronic applications by James Gosling. After
severa years of experience with the language, and significant contributions by Ed
Frank, Patrick Naughton, Jonathan Payne, and Chris Warth it was retargeted to the
Internet, renamed, and substantially revised to be the language specified here. The
final form of the language was defined by James Gosling, Bill Joy, Guy Steele,
Richard Tuck, Frank Yellin, and Arthur van Hoff, with help from Graham Hamil-
ton, Tim Lindholm, and many other friends and colleagues.

The Java programming language is a general-purpose concurrent class-based
object-oriented programming language, specifically designed to have as few
implementation dependencies as possible. It allows application developers to
write a program once and then be able to run it everywhere on the Internet.

This book attempts a complete specification of the syntax and semantics of
the language. We intend that the behavior of every language construct is specified
here, so that all implementations will accept the same programs. Except for timing
dependencies or other non-determinisms and given sufficient time and sufficient
memory space, a program written in the Java programming language should com-
pute the same result on all machines and in all implementations.

We believe that the Java programming language is a mature language, ready
for widespread use. Nevertheless, we expect some evolution of the language in the
years to come. We intend to manage this evolution in a way that is completely
compatible with existing applications. To do this, we intend to make relatively few
new versions of the language. Compilers and systems will be able to support the
several versions simultaneously, with complete compatibility.

Much research and experimentation with the Java platform is aready under-
way. We encourage this work, and will continue to cooperate with external groups
to explore improvements to the language and platform. For example, we have
aready received several interesting proposals for parameterized types. In techni-
cally difficult areas, near the state of the art, this kind of research collaboration is
essential.

XXiii

XXV

PREFACE

We acknowledge and thank the many people who have contributed to this
book through their excellent feedback, assistance and encouragement:

Particularly thorough, careful, and thoughtful reviews of drafts were provided
by Tom Cargill, Peter Deutsch, Paul Hilfinger, Masayuki |da, David Moon, Steven
Muchnick, Charles L. Perkins, Chris Van Wyk, Steve Vinoski, Philip Wadler,
Daniel Weinreb, and Kenneth Zadeck. We are very grateful for their extraordinary
volunteer efforts.

We are also grateful for reviews, questions, comments, and suggestions from
Stephen Adams, Bowen Alpern, Glenn Ammons, Leonid Arbuzov, Kim Bruce,
Edwin Chan, David Chase, Pavel Curtis, Drew Dean, William Dietz, David Dill,
Patrick Dussud, Ed Felten, John Giannandrea, John Gilmore, Charles Gust,
Warren Harris, Lee Hasiuk, Mike Hendrickson, Mark Hill, Urs Hoelzle, Roger
Hoover, Susan Flynn Hummel, Christopher Jang, Mick Jordan, Mukesh Kacker,
Peter Kessler, James Larus, Derek Lieber, Bill McKeeman, Steve Naroff,
Evi Nemeth, Robert O'Callahan, Dave Papay, Craig Partridge, Scott Pfeffer,
Eric Raymond, Jim Roskind, Jm Russell, William Scherlis, Edith Schonberg,
Anthony Scian, Matthew Self, Janice Shepherd, Kathy Stark, Barbara Steele, Rob
Strom, William Waite, Greg Weeks, and Bob Wilson. (This list was generated
semi-automatically from our E-mail records. We apologize if we have omitted
anyone.)

The feedback from all these reviewers was invaluable to us in improving the
definition of the language as well as the form of the presentation in this book. We
thank them for their diligence. Any remaining errors in this book—we hope they
are few—are our responsibility and not theirs.

We thank Francesca Freedman and Doug Kramer for assistance with matters
of typography and layout. We thank Dan Mills of Adobe Systems Incorporated for
assistance in exploring possible choices of typefaces.

Many of our colleagues at Sun Microsystems have helped us in one way or
another. Lisa Friendly, our series editor, managed our relationship with Addison-
Wesley. Susan Stambaugh managed the distribution of many hundreds of copies
of drafts to reviewers. We received valuable assistance and technical advice from
Ben Adida, Ole Agesen, Ken Arnold, Rick Cattell, Asmus Freytag, Norm Hardy,
Steve Heller, David Hough, Doug Kramer, Nancy Lee, Marianne Mueller, Akira
Tanaka, Greg Tarsy, David Ungar, Jim Waldo, Ann Wollrath, Geoff Wyant, and
Derek White. We thank Alan Baratz, David Bowen, Mike Clary, John Doerr, Jon
Kannegaard, Eric Schmidt, Bob Sproull, Bert Sutherland, and Scott McNealy for
leadership and encouragement.

The on-line Bartleby Library of Columbia University, at URL:

http://www.cc.columbia.edu/acis/bartleby/

PREFACE

was invaluable to us during the process of researching and verifying many of the
guotations that are scattered throughout this book. Here is one example:

They lard their lean books with the fat of others' works.
—Robert Burton (1576—-1640)

We are grateful to those who have toiled on Project Bartleby, for saving us a great
dedl of effort and reawakening our appreciation for the works of Walt Whitman.

We are thankful for the tools and services we had at our disposal in writing
this book: telephones, overnight delivery, desktop workstations, laser printers,
photocopiers, text formatting and page layout software, fonts, electronic mail, the
World Wide Web, and, of course, the Internet. We live in three different states,
scattered across a continent, but collaboration with each other and with our
reviewers has seemed almost effortless. Kudos to the thousands of people who
have worked over the years to make these excellent tools and services work
quickly and reliably.

Mike Hendrickson, Katie Duffy, Simone Payment, and Rosa Aimée Gonzélez
of Addison-Wesley were very helpful, encouraging, and patient during the long
process of bringing this book to print. We also thank the copy editors.

Rosemary Simpson worked hard, on avery tight schedule, to create the index.
We got into the act at the last minute, however; blame us and not her for any jokes
you may find hidden therein.

Finally, we are grateful to our families and friends for their love and support
during this last, crazy, year.

In their book The C Programming Language, Brian Kernighan and Dennis
Ritchie said that they felt that the C language “wears well as one’s experience with
it grows.” If you like C, we think you will like the Java programming language.
We hope that it, too, wears well for you.

James Gosling
Cupertino, California

Bill Joy
Aspen, Colorado

Guy Steele
Chelmsford, Massachusetts

July, 1996

XXV

Preface to the Second Edition

OVER the past few years, the Java™ programming language has enjoyed
unprecedented success. This success has brought a challenge: along with explo-
sive growth in popularity, there has been explosive growth in the demands made
on the language and its libraries. To meet this challenge, the language has grown
aswell (fortunately, not explosively) and so have the libraries.

This second edition of The Java™ Language Specification reflects these devel -
opments. It integrates all the changes made to the Java programming language
since the publication of the first edition in 1996. The bulk of these changes were
made in the 1.1 release of the Java platform in 1997, and revolve around the addi-
tion of nested type declarations. Later modifications pertained to floating-point
operations. In addition, this edition incorporates important clarifications and
amendments involving method lookup and binary compatibility.

This specification defines the language as it exists today. The Java program-
ming language is likely to continue to evolve. At this writing, there are ongoing
initiatives through the Java Community Process to extend the language with
generic types and assertions, refine the memory model, etc. However, it would be
inappropriate to delay the publication of the second edition until these efforts are
concluded.

XXVii

XXVili

PREFACE TO THE SECOND EDITION

The specifications of the libraries are now far too large to fit into this volume,
and they continue to evolve. Consequently, API specifications have been removed
from this book. The library specifications can be found on the java.sun.com
Web site (see below); this specification now concentrates solely on the Java pro-
gramming language proper.

Readers may send comments on this specification to: j1s@java. sun.com. TO
learn the latest about the Java 2 platform, or to download the latest Java 2 SDK
release, visit http://java.sun.com. Updated information about the Java Series,
including errata for The Java™ Language Specification, Second Edition, and pre-
views of forthcoming books, may be found at http://java.sun.com/Series.

Many people contributed to this book, directly and indirectly. Tim Lindholm
brought extraordinary dedication to his role as technical editor. He also made
invaluable technical contributions, especialy on floating-point issues. The book
would likely not see the light of day without him. Lisa Friendly, the Series editor,
provided encouragement and advice for which | am very thankful.

David Bowen first suggested that | get involved in the specifications of the
Java platform. | am grateful to him for introducing me to this uncommonly rich
area.

John Rose, the father of nested types in the Java programming language, has
been unfailingly gracious and supportive of my attempts to specify them accu-
rately.

Many people have provided valuable comments on this edition. Special
thanks go to Roly Perera at Ergnosis and to Leonid Arbouzov and his colleagues
on Sun’s Java platform conformance team in Novosibirsk: Konstantin Bobrovsky,
Natalia Golovleva, Vladimir Ivanov, Alexei Kaigorodov, Serguei Katkov, Dmitri
Khukhro, Eugene Latkin, llya Neverov, Pavel Ozhdikhin, Igor Pyankov,
Viatchedlav Rybalov, Serguei Samoilidi, Maxim Sokolnikov, and Vitaly Tchaiko.
Their thorough reading of earlier drafts has greatly improved the accuracy of this
specification.

| am indebted to Martin Odersky and to Andrew Bennett and the members of
Sun's javac compiler team, past and present: Iris Garcia, Bill Maddox, David
Stoutamire, and Todd Turnidge. They al worked hard to make sure the reference
implementation conformed to the specification. For many enjoyable technical
exchanges, | thank them and my other colleagues at Sun: Lars Bak, Joshua Bloch,
Cliff Click, Robert Field, Mohammad Gharahgouzloo, Ben Gomes, Steffen
Grarup, Robert Griesemer, Graham Hamilton, Gordon Hirsch, Peter Kesder,
Sheng Liang, James Mcllree, Philip Milne, Srdjan Mitrovic, Anand Palaniswamy,
Mike Paleczny, Mark Reinhold, Kenneth Russell, Rene Schmidt, David Ungar,
Chris Vick, and Hong Zhang.

PREFACE TO THE SECOND EDITION

Tricia Jordan, my manager, has been a model of patience, consideration and
understanding. Thanks are also due to Larry Abrahams, director of Java 2 Stan-
dard Edition, for supporting this work.

The following individuals all provided useful comments that have contributed
to this specification: Godmar Bak, Hans Boehm, Philippe Charles, David Chase,
Joe Darcy, Jim des Rivieres, Sophia Drossopoulou, Susan Eisenbach, Paul Haahr,
Urs Hoelzle, Bart Jacobs, Kent Johnson, Mark Lillibridge, Norbert Lindenberg,
Phillipe Mulet, Kelly O'Hair, Bill Pugh, Cameron Purdy, Anthony Scian, Janice
Shepherd, David Shields, John Spicer, Lee Worall, and David Wragg.

Suzette Pelouch provided invaluable assistance with the index and, together
with Doug Kramer and Atul Dambalkar, assisted with FrameMaker expertise;
Mike Hendrickson and Julie Dinicola at Addison-Wesley were gracious, helpful
and ultimately made this book areality.

On apersonal note, | thank my wife Weihong for her love and support.

Finally, I'd like to thank my coauthors, James Gosling, Bill Joy, and Guy
Steele for inviting me to participate in this work. It has been a pleasure and a priv-

ilege.

Gilad Bracha
Los Altos, California

April, 2000

XXiX

Preface to the Third Edition

T his edition of the Java™ Programming Language Specification represents the
largest set of changes in the language's history. Generics, annotations, asserts,
autoboxing and unboxing, enum types, foreach loops, variable arity methods and
static imports have all been added to the language recently. All but asserts are new
to the 5.0 release of autumn 2004.

Thisthird edition of The Java™ Language Specification reflects these devel op-
ments. It integrates all the changes made to the Java programming language since
the publication of the second edition in 2000.

The language has grown a great deal in these past four years. Unfortunately, it
isunredlistic to shrink acommercially successful programming language - only to
grow it more and more. The challenge of managing this growth under the con-
straints of compatibility and the conflicting demands of awide variety of uses and
users is non-trivial. | can only hope that we have met this challenge successfully
with this specification; time will tell.

Readers may send comments on this specification to: j1s@java.sun.com. TO
learn the latest about the Java platform, or to download the latest J2SE release,
visit http://java.sun.com. Updated information about the Java Series, includ-
ing errata for The Java™ Language Specification, Third Edition, and previews of
forthcoming books, may be found at http://java.sun.com/Series.

This specification builds on the efforts of many people, both at Sun Microsys-
tems and outside it.

The most crucial contribution is that of the people who actually turn the spec-
ification into real software. Chief among these are the maintainers of javac, the
reference compiler for the Java programming language.

Neal Gafter was “Mr. javac” during the crucial period in which the large
changes described here were integrated and productized. Neal’s dedication and
productivity can honestly be described as heroic. We literally could not have com-
pleted the task without him. In addition, his insight and skill made a huge contri-
bution to the design of the new language features across the board. No one

XXXi

XXXii

PREFACE TO THE THIRD EDITION

deserves more credit for this version of the language than he - but any blame for
its deficiencies should be directed at myself and the members of the many JSR
expert groups!

Neal has gone on in search of new challenges, and has been succeeded by
Peter von der Ahé, who continues to improve and stengthen the implementation.
Before Neal’sinvolvement, Bill Maddox was in charge of javac when the previous
edition was completed, and he nursed features such as generics and asserts
through their early days.

Another individual who deserves to be singled out is Joshua Bloch. Josh par-
ticipated in endless language design discussions, chaired several expert groups
and was a key contributor to the Java platform. It is fair to say that Josh and Neal
care more about this book than | do myself!

Many parts of the specification were developed by various expert groups in
the framework of the Java community process.

The most pervasive set of language changes is the result of JSR-014: Adding
Generics to the Java Programming Language. The members of the JSR-014
expert group were: Norman Cohen, Christian Kemper, Martin Odersky, Kresten
Krab Thorup, Philip Wadler and myself. In the early stages, Sven-Eric Panitz and
Steve Marx were members as well. All deserve thanks for their participation.

JSR-014 represents an unprecedented effort to fundamentally extend the type
system of awidely used programming language under very stringent compatibil-
ity requirements. A prolonged and arduous process of design and implementation
led usto the current language extension. Long before the JSR for generics was ini-
tiated, Martin Odersky and Philip Wadler had created an experimental language
called Pizzato explore theideas involved. In the spring of 1998, David Stoutamire
and myself began a collaboration with Martin and Phil based on those ideas, that
resulted in GJ. When the JSR-014 expert group was convened, GJ was chosen as
the basis for extending the Java programming language. Martin Odersky imple-
mented the GJ compiler, and his implementation became the basis for javac (start-
ing with JDK 1.3, even though generics were disabled until 1.5).

The theoretical basis for the core of the generic type system owes a great debt
to the expertise of Martin Odersky and Phil Wadler. Later, the system was
extended with wildcards. These were based on the work of Atsushi Igarashi and
Mirko Viroli, which itself built on earlier work by Kresten Thorup and Mads
Torgersen. Wildcards were initially designed and implemented as part of a collab-
oration between Sun and Aarhus University. Neal Gafter and myself participated
on Sun’s behalf, and Erik Ernst and Mads Torgersen, together with Peter von der
Ahé and Christian Plesner-Hansen, represented Aarhus. Thanks to Ole Lehrmann-
Madsen for enabling and supporting that work.

PREFACE TO THE THIRD EDITION

Joe Darcy and Ken Russell implemented much of the specific support for
reflection of generics. Neal Gafter, Josh Bloch and Mark Reinhold did a huge
amount of work generifying the JDK libraries.

Honorable mention must go to individuals whose comments on the generics
design made a significant difference. Alan Jeffrey made crucia contributions to
JSR-14 by pointing out subtle flaws in the original type system. Bob Deen sug-
gested the “? super T” syntax for lower bounded wildcards

JSR-201 included a series of changes: autoboxing, enums, foreach loops, vari-
able arity methods and static import. The members of the JSR-201 expert group
were: Cédric Beust, David Biesack, Joshua Bloch (co-chair), Corky Cartwright,
Jim des Rivieres, David Flanagan, Christian Kemper, Doug Lea, Changshin Lee,
Tim Peierls, Michel Trudeau and myself (co-chair). Enums and the foreach loop
were primarily designed by Josh Bloch and Neal Gafter. Variable arity methods
would never have made it into the language without Neal’s special efforts design-
ing them (not to mention the small matter of implementing them).

Josh Bloch bravely took upon himself the responsibility for JSR-175, which
added annotations to the language. The members of JSR-175 expert group were
Cédric Beust, Joshua Bloch (chair), Ted Farrell, Mike French, Gregor Kiczales,
Doug Lea, Deeptendu Majunder, Simon Nash, Ted Neward, Roly Perera, Manfred
Schneider, Blake Stone and Josh Street. Neal Gafter, as usual, was a major con-
tributer on this front as well.

Another change in this edition is a complete revision of the Java memory
model, undertaken by JSR-133. The members of the JSR-133 expert group were
Hans Boehm, Doug Lea, Tim Lindholm (co-chair), Bill Pugh (co-chair), Martin
Trotter and Jerry Schwarz. The primary technical authors of the memory model
are Sarita Adve, Jeremy Manson and Bill Pugh. The Java memory model chapter
in this book is in fact aimost entirely their work, with only editorial revisions.
Joseph Bowbeer, David Holmes, Victor Luchangco and Jan-Willem Maessen
made significant contributions as well. Key sections dealing with finalization in
chapter 12 owe much to this work as well, and especialy to Doug Lea.

Many people have provided valuable comments on this edition.

I'd like to express my gratitude to Archibald Putt, who provided insight and
encouragement. His writings are always an inspiration. Thanks once again to Joe
Darcy for introducing us, as well as for many useful comments, and his specific
contributions on numerical issues and the design of hexadecimal literals.

Many colleagues at Sun (past or present) have provided useful feedback and
discussion, and helped produce this work in myriad ways: Andrew Bennett, Mar-
tin Buchholz, Jerry Driscoll, Robert Field, Jonathan Gibbons, Graham Hamilton,
Mimi Hills, Jm Holmlund, Janet Koenig, Jeff Norton, Scott Seligman, Wei Tao
and David Ungar.

XXXl

XXXV

PREFACE TO THE THIRD EDITION

Special thanks to Laurie Tolson, my manager, for her support throughout the
long process of deriving these specifications.

The following individuals al provided many valuable comments that have
contributed to this specification: Scott Annanian, Martin Bravenboer, Bruce Chap-
man, Lawrence Gonsalves, Tim Hanson, David Holmes, Angelika Langer, Pat
Lavarre, Phillipe Mulet and Cal Varnson.

Ann Sellers, Greg Doench and John Fuller at Addison-Wesley were exceed-
ingly patient and ensured that the book materialized, despite the many missed
deadlines for this text.

As aways, | thank my wife Weihong and my son Teva for their support and
cooperation.

Gilad Bracha
Los Altos, California

January, 2005

CHAPTER 1

| ntroduction

T he Java™ programming language is a general-purpose, concurrent, class-based,
object-oriented language. It is designed to be simple enough that many program-
mers can achieve fluency in the language. The Java programming language is
related to C and C++ but is organized rather differently, with a number of aspects
of C and C++ omitted and a few ideas from other languages included. It is
intended to be a production language, not a research language, and so, asC. A. R.
Hoare suggested in his classic paper on language design, the design has avoided
including new and untested features.

The Java programming language is strongly typed. This specification clearly
distinguishes between the compile-time errors that can and must be detected at
compile time, and those that occur at run time. Compile time normally consists of
trandating programs into a machine-independent byte code representation. Run-
time activities include loading and linking of the classes needed to execute a pro-
gram, optional machine code generation and dynamic optimization of the pro-
gram, and actual program execution.

The Java programming language is a relatively high-level language, in that
details of the machine representation are not available through the language. It
includes automatic storage management, typically using a garbage collector, to
avoid the safety problems of explicit deallocation (as in C's free or C++'s
delete). High-performance garbage-collected implementations can have
bounded pauses to support systems programming and real-time applications. The
language does not include any unsafe constructs, such as array accesses without
index checking, since such unsafe constructs would cause a program to behave in
an unspecified way.

The Java programming language is normally compiled to the bytecoded
instruction set and binary format defined in The Java™ Virtual Machine Specifica-
tion, Second Edition (Addison-Wesl ey, 1999).

Introduction INTRODUCTION

This specification is organized as follows:

Chapter 2 describes grammars and the notation used to present the lexical and
syntactic grammars for the language.

Chapter 3 describes the lexical structure of the Java programming language,
which is based on C and C++. The language is written in the Unicode character
set. It supports the writing of Unicode characters on systems that support only
ASCII.

Chapter 4 describes types, values, and variables. Types are subdivided into
primitive types and reference types.

The primitive types are defined to be the same on all machines and in all
implementations, and are various sizes of two’s-complement integers, single- and
double-precision |EEE 754 standard floating-point numbers, aboolean type, and
aUnicode character char type. Values of the primitive types do not share state.

Reference types are the class types, the interface types, and the array types.
The reference types are implemented by dynamically created objects that are
either instances of classes or arrays. Many references to each object can exist. All
objects (including arrays) support the methods of the class Object, which is the
(single) root of the class hierarchy. A predefined String class supports Unicode
character strings. Classes exist for wrapping primitive values inside of objects. In
many cases, wrapping and unwrapping is performed automaticaly by the com-
piler (in which case, wrapping is called boxing, and unwrapping is called unbox-
ing). Class and interface declarations may be generic, that is, they may be
parameterized by other reference types. Such declarations may then be invoked
with specific type arguments.

Variables are typed storage locations. A variable of a primitive type holds a
value of that exact primitive type. A variable of aclass type can hold a null refer-
ence or a reference to an object whose type is that class type or any subclass of
that classtype. A variable of an interface type can hold anull reference or arefer-
ence to an instance of any class that implements the interface. A variable of an
array type can hold a null reference or a reference to an array. A variable of class
type Object can hold a null reference or a reference to any object, whether class
instance or array.

Chapter 5 describes conversions and numeric promotions. Conversions
change the compile-time type and, sometimes, the value of an expression. These
conversions include the boxing and unboxing conversions between primitive types
and reference types. Numeric promotions are used to convert the operands of a
numeric operator to a common type where an operation can be performed. There
are no loopholes in the language; casts on reference types are checked at run time
to ensure type safety.

Chapter 6 describes declarations and names, and how to determine what
names mean (denote). The language does not require types or their membersto be

INTRODUCTION Introduction

declared before they are used. Declaration order is significant only for local vari-
ables, local classes, and the order of initializers of fieldsin a class or interface.

The Java programming language provides control over the scope of names
and supports limitations on external access to members of packages, classes, and
interfaces. This helpsin writing large programs by distinguishing the implementa-
tion of atype from its users and those who extend it. Recommended naming con-
ventions that make for more readable programs are described here.

Chapter 7 describes the structure of a program, which is organized into pack-
ages similar to the modules of Modula. The members of a package are classes,
interfaces, and subpackages. Packages are divided into compilation units. Compi-
lation units contain type declarations and can import types from other packages to
give them short names. Packages have names in a hierarchical name space, and
the Internet domain name system can usually be used to form unique package
names.

Chapter 8 describes classes. The members of classes are classes, interfaces,
fields (variables) and methods. Class variables exist once per class. Class methods
operate without reference to a specific object. Instance variables are dynamically
created in objects that are instances of classes. Instance methods are invoked on
instances of classes; such instances become the current object this during their
execution, supporting the object-oriented programming style.

Classes support single implementation inheritance, in which the implementa-
tion of each class is derived from that of a single superclass, and ultimately from
the class Object. Variables of a class type can reference an instance of that class
or of any subclass of that class, allowing new types to be used with existing meth-
ods, polymorphically.

Classes support concurrent programming with synchronized methods.
M ethods declare the checked exceptions that can arise from their execution, which
alows compile-time checking to ensure that exceptional conditions are handled.
Objects can declare a finalize method that will be invoked before the objects
are discarded by the garbage collector, alowing the objects to clean up their state.

For simplicity, the language has neither declaration “headers’ separate from
the implementation of a class nor separate type and class hierarchies.

A special form of classes, enums, support the definition of small sets of values
and their manipulation in a type safe manner. Unlike enumerations in other lan-
guages, enums are objects and may have their own methods.

Chapter 9 describes interface types, which declare a set of abstract methods,
member types, and constants. Classes that are otherwise unrelated can implement
the same interface type. A variable of an interface type can contain a reference to
any abject that implements the interface. Multiple interface inheritance is sup-
ported.

Introduction INTRODUCTION

Annotation types are speciaized interfaces used to annotate declarations.
Such annotations are not permitted to affect the semantics of programsin the Java
programming language in any way. However, they provide useful input to various
tools.

Chapter 10 describes arrays. Array accesses include bounds checking. Arrays
are dynamically created objects and may be assigned to variables of type Object.
The language supports arrays of arrays, rather than multidimensional arrays.

Chapter 11 describes exceptions, which are nonresuming and fully integrated
with the language semantics and concurrency mechanisms. There are three kinds
of exceptions: checked exceptions, run-time exceptions, and errors. The compiler
ensures that checked exceptions are properly handled by requiring that a method
or constructor can result in a checked exception only if the method or constructor
declares it. This provides compile-time checking that exception handlers exist,
and aids programmingin the large. Most user-defined exceptions should be
checked exceptions. Invalid operationsin the program detected by the Java virtual
machine result in run-time exceptions, such as Nul1PointerException. Errors
result from failures detected by the virtual machine, such as OutOfMemoryError.
Most simple programs do not try to handle errors.

Chapter 12 describes activities that occur during execution of a program. A
program is normally stored as binary files representing compiled classes and inter-
faces. These binary files can be loaded into a Java virtual machine, linked to other
classes and interfaces, and initialized.

After initialization, class methods and class variables may be used. Some
classes may be instantiated to create new objects of the class type. Objects that are
class instances also contain an instance of each superclass of the class, and object
creation involves recursive creation of these superclass instances.

When an object is no longer referenced, it may be reclaimed by the garbage
collector. If an object declares a finalizer, the finalizer is executed before the
object is reclaimed to give the object a last chance to clean up resources that
would not otherwise be released. When a class is no longer needed, it may be
unloaded.

Chapter 13 describes binary compatibility, specifying the impact of changes
to types on other types that use the changed types but have not been recompiled.
These considerations are of interest to developers of types that are to be widely
distributed, in a continuing series of versions, often through the Internet. Good
program development environments automatically recompile dependent code
whenever atype is changed, so most programmers need not be concerned about
these details.

Chapter 14 describes blocks and statements, which are based on C and C++.
The language has no goto statement, but includes labeled break and continue
statements. Unlike C, the Java programming language requires boolean (or

INTRODUCTION Example Programs

Boolean) expressions in control-flow statements, and does not convert types to
boolean implicitly (except through unboxing), in the hope of catching more
errors at compile time. A synchronized statement provides basic object-level
monitor locking. A try statement can include catch and finally clausesto pro-
tect against non-local control transfers.

Chapter 15 describes expressions. This document fully specifies the (appar-
ent) order of evaluation of expressions, for increased determinism and portability.
Overloaded methods and constructors are resolved at compile time by picking the
most specific method or constructor from those which are applicable.

Chapter 16 describes the precise way in which the language ensures that local
variables are definitely set before use. While all other variables are automatically
initialized to a default value, the Java programming language does not automati-
caly initialize local variablesin order to avoid masking programming errors.

Chapter 17 describes the semantics of threads and locks, which are based on
the monitor-based concurrency originally introduced with the Mesa programming
language. The Java programming language specifies a memory model for shared-
memory multiprocessors that supports high-performance implementations.

Chapter 18 presents a syntactic grammar for the language.

The book concludes with an index, credits for quotations used in the book,
and a colophon describing how the book was created.

1.1 Example Programs

Most of the example programs given in the text are ready to be executed and are
similar in form to:

class Test {
public static void main(String[] args) {
for (int i = 0; i < args.length; i++)
System.out.print(i == 0 ? args[i]
System.out.println();

+ args[i]);

}
}

On a Sun workstation using Sun’'s Java 2 Platform Standard Edition Develp-
ment Kit software, this class, stored in the file Test. java, can be compiled and
executed by giving the commands:

javac Test.java
java Test Hello, world.

producing the output:
Hello, world.

11

12

Notation INTRODUCTION

1.2 Notation

Throughout this book we refer to classes and interfaces drawn from the Java and
Java 2 platforms. Whenever we refer to a class or interface which is not defined in
an example in this book using asingle identifier N, the intended reference isto the
class or interface named N in the package java. 1ang. We use the canonical hame
(86.7) for classes or interfaces from packages other than java.lang.

Whenever we refer to the The Java™ Mirtual Machine Specification in this
book, we mean the second edition, as amended by JSR 924.

1.3 Relationship to Predefined Classes and I nter faces

As noted above, this specification often refers to classes of the Java and Java 2
platforms. In particular, some classes have a specia relationship with the Java
programming language. Examples include classes such as Object, Class,
ClassLoader, String, Thread, and the classes and interfaces in package
java.lang.reflect, among others. The language definition constrains the
behavior of these classes and interfaces, but this document does not provide a
complete specification for them. The reader is referred to other parts of the Java
platform specification for such detailed API specifications.

Thus this document does not describe reflection in any detail. Many linguistic
constructs have analogues in the reflection API, but these are generally not dis-
cussed here. So, for example, when we list the ways in which an object can be cre-
ated, we generaly do not include the ways in which the reflective APl can
accomplish this. Readers should be aware of these additional mechanisms even
though they are not mentioned in thistext.

1.4 References

Apple Computer. Dylan™ Reference Manual. Apple Computer Inc., Cupertino, California.
September 29, 1995. Seeaso http://www.cambridge.apple.com.

Bobrow, Daniel G., Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gregor
Kiczales, and David A. Moon. Common Lisp Object System Specification, X3J13
Document 88-002R, June 1988; appears as Chapter 28 of Steele, Guy. Common Lisp:
The Language, 2nd ed. Digital Press, 1990, ISBN 1-55558-041-6, 770-864.

Ellis, Margaret A., and Bjarne Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley, Reading, Massachusetts, 1990, reprinted with corrections October
1992, ISBN 0-201-51459-1.

INTRODUCTION References

Goldberg, Adele and Robson, David. Smalltalk-80: The Language. Addison-Wesley,
Reading, Massachusetts, 1989, ISBN 0-201-13688-0.

Harbison, Samuel. Modula-3. Prentice Hall, Englewood Cliffs, New Jersey, 1992, ISBN
0-13-596396.

Hoare, C. A. R. Hints on Programming Language Design. Stanford University Computer
Science Department Technical Report No. CS-73-403, December 1973. Reprinted in
SIGACT/SIGPLAN Symposium on Principles of Programming Languages. Associa
tion for Computing Machinery, New York, October 1973.

IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std. 754-1985. Avail-
able from Global Engineering Documents, 15 Inverness Way East, Englewood, Colo-
rado 80112-5704 USA; 800-854-7179.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language, 2nd ed.
Prentice Hall, Englewood Cliffs, New Jersey, 1988, ISBN 0-13-110362-8.

Madsen, Ole Lehrmann, Birger Maller-Pedersen, and Kristen Nygaard. Object-Oriented
Programming in the Beta Programming Language. Addison-Wesley, Reading, Mas-
sachusetts, 1993, ISBN 0-201-62430-3.

Mitchell, James G., William Maybury, and Richard Sweet. The Mesa Programming
Language, Version 5.0. Xerox PARC, Palo Alto, California, CSL 79-3, April 1979.

Stroustrup, Bjarne. The C++ Progamming Language, 2nd ed. Addison-Wesley, Reading,
M assachusetts, 1991, reprinted with corrections January 1994, ISBN 0-201-53992-6.

Unicode Consortium, The. The Unicode Sandard: Worldwide Character Encoding, Ver-
sion 1.0, Volume 1, ISBN 0-201-56788-1, and Volume 2, ISBN 0-201-60845-6.
Updates and additions necessary to bring the Unicode Standard up to version 1.1 may
befound at http://www.unicode.org.

Unicode Consortium, The. The Unicode Sandard, Version 2.0, ISBN 0-201-48345-9.
Updates and additions necessary to bring the Unicode Standard up to version 2.1 may
befound at http://www.unicode.org.

Unicode Consortium, The. The Unicode Sandard, Version 4.0, ISBN 0-321-18578-1.
Updates and additions may be found at http: //www.unicode.org.

14

14 References INTRODUCTION

CHAPTER 2

Grammars

T HIS chapter describes the context-free grammars used in this specification to
define the lexical and syntactic structure of a program.

2.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has
an abstract symbol called a nonterminal as its left-hand side, and a sequence of
one or more nonterminal and terminal symbols as its right-hand side. For each
grammar, the terminal symbols are drawn from a specified alphabet.

Starting from a sentence consisting of a single distinguished nonterminal,
called the goal symbol, a given context-free grammar specifies a language,
namely, the set of possible sequences of terminal symbols that can result from
repeatedly replacing any nonterminal in the sequence with aright-hand side of a
production for which the nonterminal is the left-hand side.

2.2 ThelLexical Grammar

A lexical grammar for the Java programming language is given in (83). This
grammar has asitsterminal symbols the characters of the Unicode character set. It
defines a set of productions, starting from the goal symbol Input (83.5), that
describe how sequences of Unicode characters (83.1) are trandated into a
sequence of input elements (83.5).

These input elements, with white space (83.6) and comments (83.7) dis-
carded, form the terminal symbols for the syntactic grammar for the Java pro-
gramming language and are called tokens (83.5). These tokens are the identifiers

23

10

The Syntactic Grammar GRAMMARS

(83.8), keywords (83.9), literals (83.10), separators (83.11), and operators (83.12)
of the Java programming language.

2.3 The Syntactic Grammar

The syntactic grammar for the Java programming language is given in Chapters 4,
6-10, 14, and 15. This grammar has tokens defined by the lexical grammar as its
terminal symbols. It defines a set of productions, starting from the goal symbol
CompilationUnit (87.3), that describe how sequences of tokens can form syntacti-
cally correct programs.

2.4 Grammar Notation

Terminal symbols are shown in fixed width font in the productions of the lexical
and syntactic grammars, and throughout this specification whenever the text is
directly referring to such a terminal symbol. These are to appear in a program
exactly aswritten.

Nonterminal symbols are shown in italic type. The definition of a nonterminal
is introduced by the name of the nonterminal being defined followed by a colon.
One or more aternative right-hand sides for the nonterminal then follow on suc-
ceeding lines. For example, the syntactic definition:

IfThenStatement:
if (Expression) Satement

states that the nonterminal IfThenStatement represents the token 1 f, followed by a
left parenthesis token, followed by an Expression, followed by aright parenthesis
token, followed by a Satement.

As another example, the syntactic definition:

ArgumentList:
Argument
ArgumentList , Argument

states that an ArgumentList may represent either a single Argument or an
ArgumentList, followed by a comma, followed by an Argument. This definition of
ArgumentList is recursive, that isto say, it is defined in terms of itself. The result
is that an ArgumentList may contain any positive number of arguments. Such
recursive definitions of nonterminals are common.

The subscripted suffix “opt”, which may appear after aterminal or nontermi-
nal, indicates an optional symbol. The aternative containing the optional symbol

GRAMMARS Grammar Notation

actually specifies two right-hand sides, one that omits the optional element and
one that includesiit.
This means that:

BreakStatement:
break ldentifiergy ;

is a convenient abbreviation for:

BreakSatement:
break ;
break ldentifier ;

and that:

BasicFor Statement:
for (Forlnitoy ; EXpressiongy ; ForUpdateyy) Statement

is a convenient abbreviation for:

Basi cFor Satement:
for (; Expressiongy ; ForUpdateyy) Statement
for (Forlnit ; Expressiongy ; ForUpdateyy) Statement

which in turn is an abbreviation for:

BasicFor Statement:
for (; ; ForUpdateyy) Satement
for (; Expression ; ForUpdateyy) Statement
for (Forlnit ; ; ForUpdateopt) Satement
for (Forlnit ; Expression ; ForUpdategy) Statement

which in turn is an abbreviation for:

BasicFor Satement:
for (; ;) Satement
for (; ; ForUpdate) Satement
for (; Expression ;) Satement
for (; Expression ; ForUpdate) Satement
for (Forlnit ; ;) Satement
for (Forlnit ; ; ForUpdate) Satement
for (Forlnit ; Expression ;) Satement
(

for (Forlnit ; Expression ; ForUpdate) Satement

so the nonterminal BasicForStatement actually has eight aternative right-hand
sides.

A very long right-hand side may be continued on a second line by substan-
tially indenting this second line, asin:

24

11

24

12

Grammar Notation GRAMMARS

ConstructorDeclaration:
ConstructorModifiersyy Constructor Declarator
Throwsgy; Constructor Body

which defines one right-hand side for the nonterminal Constructor Declaration.

When the words “one of ” follow the colon in a grammar definition, they sig-
nify that each of the terminal symbols on the following line or linesis an aterna-
tive definition. For example, the lexical grammar contains the production:

ZeroToThree: one of
0123

which is merely a convenient abbreviation for:

ZeroToThree:
0

1
2
3

When an alternative in alexical production appears to be atoken, it represents
the sequence of characters that would make up such atoken. Thus, the definition:

BooleanLiteral: one of
true false

in alexical grammar production is shorthand for:

BooleanLiteral:
true
false

The right-hand side of a lexical production may specify that certain expan-
sions are not permitted by using the phrase “but not” and then indicating the
expansions to be excluded, as in the productions for InputCharacter (83.4) and
Identifier (83.8):

InputCharacter:
Unicodel nputCharacter but not Cr or LF

Identifier:
| dentifierName but not a Keyword or BooleanLiteral or NullLiteral

Finally, a few nonterminal symbols are described by a descriptive phrase in
roman type in cases where it would be impractical to list all the alternatives:

Rawl nputCharacter:
any Unicode character

CHAPTER 3

Lexical Structure

T HIS chapter specifiesthe lexical structure of the Java programming language.

Programs are written in Unicode (83.1), but lexical translations are provided
(83.2) so that Unicode escapes (83.3) can be used to include any Unicode charac-
ter using only ASCII characters. Line terminators are defined (83.4) to support the
different conventions of existing host systems while maintaining consistent line
numbers.

The Unicode characters resulting from the lexical tranglations are reduced to a
sequence of input elements (83.5), which are white space (§3.6), comments
(83.7), and tokens. The tokens are the identifiers (83.8), keywords (83.9), literals
(83.10), separators (83.11), and operators (83.12) of the syntactic grammar.

3.1 Unicode

Programs are written using the Unicode character set. Information about this
character set and its associated character encodings may be found at:

http://www.unicode.org

The Java platform tracks the Unicode specification as it evolves. The precise ver-
sion of Unicode used by a given release is specified in the documentation of the
classCharacter.

Versions of the Java programming language prior to 1.1 used Unicode version
1.1.5. Upgrades to newer versions of the Unicode Standard occurred in JDK 1.1
(to Unicode 2.0), JDK 1.1.7 (to Unicode 2.1), J2SE 1.4 (to Unicode 3.0), and
J2SE 5.0 (to Unicode 4.0).

The Unicode standard was originally designed as a fixed-width 16-bit charac-
ter encoding. It has since been changed to allow for characters whose representa-

13

3.2

14

Lexical Trandations LEXICAL STRUCTURE

tion requires more than 16 bits. The range of legal code points is how U+0000 to
U+10FFFF, using the hexadecimal U+ n notation. Characters whose code points are
greater than U+FFFF are called supplementary characters. To represent the com-
plete range of characters using only 16-bit units, the Unicode standard defines an
encoding caled UTF-16. In this encoding, supplementary characters are repre-
sented as pairs of 16-bit code units, the first from the high-surrogates range,
(u+D800 to U+DBFF), the second from the low-surrogates range (U+DC00 to
U+DFFF). For characters in the range U+0000 to U+FFFF, the values of code points
and UTF-16 code units are the same.

The Java programming language represents text in sequences of 16-bit code
units, using the UTF-16 encoding. A few APIs, primarily in the Character class,
use 32-hit integers to represent code points as individual entities. The Java plat-
form provides methods to convert between the two representations.

This book uses the terms code point and UTF-16 code unit where the repre-
sentation is relevant, and the generic term character where the representation is
irrelevant to the discussion.

Except for comments (83.7), identifiers, and the contents of character and
string literals (83.10.4, §3.10.5), all input elements (83.5) in aprogram are formed
only from ASCII characters (or Unicode escapes (83.3) which result in ASCII
characters). ASCII (ANSI X3.4) is the American Standard Code for Information
Interchange. The first 128 characters of the Unicode character encoding are the
ASCII characters.

3.2 Lexical Trandations

A raw Unicode character stream is trandated into a sequence of tokens, using the
following three lexical trandation steps, which are applied in turn:

1. A trandation of Unicode escapes (83.3) in the raw stream of Unicode charac-
ters to the corresponding Unicode character. A Unicode escape of the form
\uxxxx, Where xxxx is a hexadecimal value, represents the UTF-16 code unit
whose encoding is xxxx. This trandation step allows any program to be
expressed using only ASCII characters.

2. A trandation of the Unicode stream resulting from step 1 into a stream of
input characters and line terminators (83.4).

3. A trangdlation of the stream of input characters and line terminators resulting
from step 2 into a sequence of input elements (83.5) which, after white space
(83.6) and comments (83.7) are discarded, comprise the tokens (83.5) that are
the terminal symbols of the syntactic grammar (82.3).

LEXICAL STRUCTURE Unicode Escapes

The longest possible translation is used at each step, even if the result does not
ultimately make a correct program while another lexical trandation would. Thus
the input characters a--b are tokenized (83.5) as a, --, b, which is not part of any
grammatically correct program, even though the tokenization a, -, -, b could be
part of agrammatically correct program.

3.3 Unicode Escapes

Implementations first recognize Unicode escapes in their input, transating the
ASCII characters \u followed by four hexadecimal digitsto the UTF-16 code unit
(83.1) with the indicated hexadecimal value, and passing all other characters
unchanged. Representing supplementary characters requires two consecutive Uni-
code escapes. This trandation step results in a sequence of Unicode input charac-
ters:

Unicodel nputCharacter:
UnicodeEscape
Rawl nputCharacter

UnicodeEscape:
\ UnicodeMarker HexDigit HexDigit HexDigit HexDigit

UnicodeMarker:
u
UnicodeMarker u

Rawl nputCharacter:
any Unicode character

HexDigit: one of
0123 4567 89 abocdefABU CDEF

The\, u, and hexadecimal digits here are all ASCII characters.

In addition to the processing implied by the grammar, for each raw input char-
acter that is abackslash \, input processing must consider how many other \ char-
acters contiguously precede it, separating it from a non-\ character or the start of
the input stream. If this number is even, then the \ is eligible to begin a Unicode
escape; if the number is odd, then the \ is not igible to begin a Unicode escape.
For example, the raw input "\\u2297=\u2297" results in the eleven characters
"\\u2297=® " (\u2297 isthe Unicode encoding of the character “®").

If an eligible \ is not followed by u, then it is treated as a Rawl nputCharacter
and remains part of the escaped Unicode stream. If an eligible \ isfollowed by u,

3.3

15

34

16

Line Terminators LEXICAL STRUCTURE

or more than one u, and the last u is not followed by four hexadecimal digits, then
acompile-time error occurs.

The character produced by a Unicode escape does not participate in further
Unicode escapes. For example, the raw input \u005cu005a resultsin the six char-
acters\ u 0 0 5 a, because 005c is the Unicode value for \. It does not result in
the character Z, which is Unicode character 005a, because the \ that resulted from
the \u005c is not interpreted as the start of afurther Unicode escape.

The Java programming language specifies a standard way of transforming a
program written in Unicode into ASCII that changes a program into a form that
can be processed by ASCII-based tools. The transformation involves converting
any Unicode escapes in the source text of the program to ASCII by adding an
extra u—for example, \uxxxx becomes \uuxxxx—while simultaneously convert-
ing non-ASCII characters in the source text to Unicode escapes containing a sin-
gleu each.

This transformed version is equally acceptable to a compiler for the Java pro-
gramming language ("Java compiler") and represents the exact same program.
The exact Unicode source can later be restored from this ASCII form by convert-
ing each escape sequence where multiple u’s are present to a sequence of Unicode
characters with one fewer u, while simultaneously converting each escape
sequence with asingle u to the corresponding single Unicode character.

Implementations should use the \uxxxx notation as an output format to dis-
play Unicode characters when a suitable font is not available.

3.4 LineTerminators

Implementations next divide the sequence of Unicode input characters into lines
by recognizing line terminators. This definition of lines determines the line num-
bers produced by a Java compiler or other system component. It also specifiesthe
termination of the // form of acomment (83.7).

LineTerminator:
the ASCII LF character, also known as “ newling”
the ASCII cR character, also known as “return”
the ASCII cRr character followed by the ASCII LF character

InputCharacter:
Unicodel nputCharacter but not CR or LF

Lines are terminated by the ASCII characters CR, or LF, or CR LF. The two
characters CR immediately followed by LF are counted as one line terminator, not
two.

LEXICAL STRUCTURE Input Elements and Tokens

The result is a sequence of line terminators and input characters, which are the
terminal symbols for the third step in the tokenization process.

3.5 Input Elementsand Tokens

Theinput characters and line terminators that result from escape processing (83.3)
and then input line recognition (83.4) are reduced to a sequence of input el ements.
Those input elements that are not white space (83.6) or comments (83.7) are
tokens. The tokens are the terminal symbols of the syntactic grammar (82.3).

This process is specified by the following productions:

Input:
InputElementsyy: Subgp:

InputElements:
InputElement
InputElements InputElement

InputElement:
WhiteSpace
Comment
Token

Token:
Identifier

Keyword
Literal

Separator

Operator

b
the ASCII suB character, also known as “ control-Z"

White space (83.6) and comments (83.7) can serve to separate tokens that, if
adjacent, might be tokenized in another manner. For example, the ASCII charac-
ters - and = in the input can form the operator token -= (83.12) only if thereisno
intervening white space or comment.

As a special concession for compatibility with certain operating systems, the
ASCII suB character (\u001a, or control-Z) isignored if it isthe last character in
the escaped input stream.

Consider two tokens x and y in the resulting input stream. If x precedesy,
then we say that x isto the left of y and that y isto the right of x.

35

17

3.6

18

White Space LEXICAL STRUCTURE

For example, in this simple piece of code:
class Empty {
3

we say that the } token isto the right of the { token, even though it appears, in this
two-dimensional representation on paper, downward and to the left of the { token.
This convention about the use of the words left and right allows us to speak, for
example, of the right-hand operand of a binary operator or of the left-hand side of
an assignment.

3.6 White Space

White space is defined as the ASCII space, horizontal tab, and form feed charac-
ters, aswell asline terminators (83.4).

WhiteSpace:
the ASCII sp character, also known as “ space”
the ASCII HT character, aso known as “horizontal tab”
the ASCII FF character, also known as “form feed”
LineTerminator

3.7 Comments

There are two kinds of comments;

/* text */ A traditional comment: all the text from the ASCI|
characters /* to the ASCII characters */ isignored
(asin C and C++).

// text A end-of-line comment: all the text from the ASCI|
characters // to theend of thelineisignored (asin
C++).

These comments are formally specified by the following productions:

Comment:
Traditional Comment
EndOfLineComment

Traditional Comment:
/ * CommentTail

LEXICAL STRUCTURE Identifiers 3.8

EndOfLineComment:
/ / CharactersinLinegy

CommentTail:
* CommentTailSar
NotSar CommentTail

CommentTailSar:

/
* CommentTailSar
NotStarNotJash CommentTail

NotSar:
InputCharacter but not *
LineTerminator

NotStar NotSash:
InputCharacter but not * or /
LineTerminator

CharactersinLine:
InputCharacter
CharactersinLine InputCharacter

These productionsimply all of the following properties:
» Comments do not nest.
* /* and */ have no special meaning in comments that begin with //.
» // has no special meaning in comments that begin with /= or /+**,

As aresult, the text:

/* this comment /* // /** ends here: */
is asingle complete comment.

Thelexical grammar implies that comments do not occur within character lit-
erals (83.10.4) or string literals (83.10.5).

3.8 ldentifiers

An identifier is an unlimited-length sequence of Java letters and Java digits, the
first of which must be a Java letter. An identifier cannot have the same spelling
(Unicode character sequence) as a keyword (83.9), boolean literal (83.10.3), or the
null literal (83.10.7).

19

3.8

20

Identifiers LEXICAL STRUCTURE

| dentifier:
I dentifier Chars but not a Keyword or BooleanLiteral or NullLiteral

IdentifierChars:
Javal etter
IdentifierChars JavaletterOrDigit

Javal etter:
any Unicode character that is a Java letter (see below)

JavaL etter OrDigit:
any Unicode character that is a Java | etter-or-digit (see below)

Letters and digits may be drawn from the entire Unicode character set, which
supports most writing scripts in use in the world today, including the large sets for
Chinese, Japanese, and Korean. This allows programmers to use identifiers in
their programs that are written in their native languages.

A “Javaletter” isacharacter for which the method Character.isJavaIden-
tifierStart(int) returnstrue. A “Javaletter-or-digit” is a character for which
the method Character.isJavaldentifierPart(int) returns true.

The Java letters include uppercase and lowercase ASCII Latin letters A—Z
(\u0041-\u005a), and a—z (\u0061-\u007a), and, for historical reasons, the
ASCII underscore (_, or \u005f) and dollar sign ($, or \u0024). The $ character
should be used only in mechanically generated source code or, rarely, to access
preexisting names on legacy systems.

The*Java digits’ include the ASCII digits 0-9 (\u0030—\u0039).

Two identifiers are the same only if they are identical, that is, have the same
Unicode character for each letter or digit.

Identifiers that have the same externa appearance may yet be different. For
example, the identifiers consisting of the single letters LATIN CAPITAL LETTER A
(A, \u0041), LATIN SMALL LETTERA (a, \u0061), GREEK CAPITAL LETTER ALPHA
(A, \u0391), CYRILLIC SMALL LETTER A (a, \u0430) and MATHEMATICAL BOLD
ITALIC SMALL A (a, \ud835\udc82) are al different.

Unicode composite characters are different from the decomposed characters.
For example, a LATIN CAPITAL LETTERA ACUTE (A, \u00c1) could be considered
to be the same as a LATIN CAPITAL LETTER A (A, \u0041) immediately followed
by a NON-SPACING ACUTE (7, \u0301) when sorting, but these are different in
identifiers. See The Unicode Standard, Volume 1, pages 412ff for details about
decomposition, and see pages 626627 of that work for details about sorting.
Examples of identifiers are:

String i3 aPETN MAX_VALUE isLetterOrDigit

LEXICAL STRUCTURE Literals

3.9 Keywords

The following character sequences, formed from ASCII letters, are reserved for
use as keywords and cannot be used as identifiers (83.8):

Keyword: one of

abstract continue for new switch
assert default if package synchronized
boolean do goto private this
break double impTlements protected throw
byte else import public throws
case enum instanceof return transient
catch extends int short try

char final interface static void
class finally Tong strictfp volatile
const float native super while

The keywords const and goto are reserved, even though they are not cur-
rently used. This may allow a Java compiler to produce better error messages if
these C++ keywords incorrectly appear in programs.

While true and false might appear to be keywords, they are technicaly
Boolean literals (83.10.3). Similarly, while nu11 might appear to be a keyword, it
istechnically the null literal (83.10.7).

3.10 Literals

A literal isthe source code representation of a value of a primitive type (84.2), the
String type (84.3.3), or the null type (84.1):

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
SringLiteral
NullLiteral

3.10

21

3.10.1 Integer Literals LEXICAL STRUCTURE

3.10.1 Integer Literals

See §84.2.1 for agenera discussion of the integer types and values.
An integer literal may be expressed in decimal (base 10), hexadecimal
(base 16), or octal (base 8):

IntegerLiteral:
DecimallntegerLiteral
HexIntegerLiteral
OctalIntegerLiteral

DecimallntegerLiteral:
DecimalNumeral Integer TypeSuffiXqp

HexIntegerLiteral:
HexNumeral Integer TypeSuffiXop

OctalIntegerLiteral:
OctalNumeral Integer TypeSuffixgpt

Integer TypeSuffix: one of
T L

An integer literal is of type Tong if it is suffixed with an ASCII letter L or 1
(ell); otherwiseit isof typeint (84.2.1). The suffix L is preferred, because the | et-
ter 1 (éll) is often hard to distinguish from the digit 1 (one).

A decima numera is either the single ASCII character 0, representing the
integer zero, or consists of an ASCII digit from 1 to 9, optionally followed by one
or more ASCII digitsfrom 0 to 9, representing a positive integer:

DecimalNumeral:

0

NonZeroDigit Digitsyy
Digits:

Digit

Digits Digit
Digit:

0

NonZeroDigit

NonZeroDigit: one of
12 3 456 7 8 9

A hexadecimal numeral consists of the leading ASCII characters 0x or 0X fol-
lowed by one or more ASCII hexadecimal digits and can represent a positive,

22

LEXICAL STRUCTURE Integer Literals 3.10.1

zero, or negative integer. Hexadecimal digits with values 10 through 15 are repre-
sented by the ASCII letters a through f or A through F, respectively; each letter
used as a hexadecimal digit may be uppercase or lowercase.

HexNumeral:
0 x HexDigits
0 X HexDigits

HexDigits:
HexDigit
HexDigit HexDigits
The following production from 83.3 is repeated here for clarity:

HexDigit: one of
0123 45467 89 abocdefABU CDEF

An octal numeral consists of an ASCII digit 0 followed by one or more of the
ASCII digits 0 through 7 and can represent a positive, zero, or negative integer.

OctalNumeral:
0 OctalDigits

OctalDigits:
Octal Digit
OctalDigit OctalDigits

OctalDigit: one of
012 3 456 7

Note that octal numerals always consist of two or more digits; 0 is aways
considered to be a decimal numeral—not that it matters much in practice, for the
numerals 0, 00, and 0x0 all represent exactly the same integer value.

Thelargest decimal literal of type int is2147483648 (23'). All decimal liter-
als from 0 to 2147483647 may appear anywhere an int literal may appear, but
the literal 2147483648 may appear only as the operand of the unary negation
operator -.

The largest positive hexadecimal and octa literals of type int are
Ox7fffffff and 017777777777, respectively, which equal 2147483647
(231 -1). The most negative hexadecimal and octal literals of type int are
0x80000000 and 020000000000, respectively, each of which represents the deci-
mal value -2147483648 (-23!). The hexadecimal and octal literals Oxffffffff
and 037777777777, respectively, represent the decimal value -1.

A compile-time error occurs if a decimal litera of type int is larger than
2147483648 (2°!), or if the literal 2147483648 appears anywhere other than as

23

3.10.2 Floating-Point Literals LEXICAL STRUCTURE

24

the operand of the unary - operator, or if a hexadecimal or octal int literal does
not fit in 32 bits.
Examples of int literals:
0 2 0372 OxDadaCafe 1996 OxO00FFOOFF

The largest decimal literal of type long is 9223372036854775808L (293).
All decimal literals from OL t0 9223372036854775807L may appear anywhere a
Tong literal may appear, but the literal 9223372036854775808L may appear only
as the operand of the unary negation operator -.

The largest positive hexadecimal and octal literals of type Tong are
Ox7fFFFFFFfffffffffL and 0777777777777777777777L, respectively, which
equal 9223372036854775807L (2% —1). The literals 0x8000000000000000L
and 01000000000000000000000L are the most negative 1ong hexadecimal and
octd literals, respectively. Each has the decimal value -9223372036854775808L
(-2%). The hexadecimal and octal literals OxffffffFFFFFFFFFFL and
01777777777777777777777L, respectively, represent the decimal value -1L.

A compile-time error occurs if a decimal literal of type long is larger than
9223372036854775808L (2°%), or if the literal 9223372036854775808L appears
anywhere other than as the operand of the unary - operator, or if a hexadecimal or
octal Tong literal does not fit in 64 hits.

Examples of 1ong literas:

01 0777L 0x100000000L 2147483648L 0xCOBOL

3.10.2 Floating-Point Literals

See 84.2.3 for ageneral discussion of the floating-point types and values.

A floating-point literal has the following parts. a whole-number part, a deci-
mal or hexadecimal point (represented by an ASCII period character), afractional
part, an exponent, and atype suffix. A floating point number may be written either
as adecimal value or as a hexadecimal value. For decimal literals, the exponent, if
present, isindicated by the ASCII letter e or E followed by an optionally signed
integer. For hexadecimal literals, the exponent is always required and is indicated
by the ASCI|I letter p or P followed by an optionally signed integer.

For decimal floating-point literals, at least one digit, in either the whole num-
ber or the fraction part, and either adecimal point, an exponent, or afloat type suf-
fix are required. All other parts are optional. For hexadecimal floating-point
literals, at least one digit is required in either the whole number or fraction part,
the exponent is mandatory, and the float type suffix is optional.

A floating-point literal is of type float if it is suffixed with an ASCII letter F
or f; otherwise itstype is doub1e and it can optionally be suffixed with an ASCI|
letter D or d.

LEXICAL STRUCTURE Floating-Point Literals

FloatingPointLiteral:
Decimal FloatingPointLiteral
Hexadeci mal FloatingPointLiteral

DecimalFloatingPointLiteral:
Digits . Digitsyy ExponentPartqy FloatTypeSuffiXqp
. Digits ExponentPart,y FloatTypeSuffixyy
Digits ExponentPart FloatTypeSuffiXqp
Digits ExponentPart,, FloatTypeSuffix

ExponentPart:
Exponentindicator Sgnedinteger

Exponentlndicator: one of
e E

Sgnedinteger:
Sgngy Digits

Sgn: one of
+ -_

FloatTypeSuffix: one of
fFdD

Hexadecimal FloatingPointLiteral:
HexSgnificand BinaryExponent FloatTypeSuffiXqp

HexSgnificand:
HexNumeral
HexNumeral .
Ox HexDigitsyyt - HexDigits
OX HexDigitsgp . HexDigits

BinaryExponent:
BinaryExponentindicator Sgnedinteger

BinaryExponent!ndicator : one of
p P

The elements of the types f1oat and doube are those values that can be rep-
resented using the |IEEE 754 32-bit single-precision and 64-bit double-precision
binary floating-point formats, respectively.

The details of proper input conversion from a Unicode string representation of
a floating-point number to the internal |EEE 754 binary floating-point representa-
tion are described for the methods valueOf of class Float and class Double of
the package java. Tang.

3.10.2

25

3.10.3 Boolean Literals LEXICAL STRUCTURE

26

The largest positivefinite float literal is3.4028235e38f. The smallest posi-
tive finite nonzero literal of type float is 1.40e-45f. The largest positive finite
doube literal is1.7976931348623157e308. The smallest positive finite nonzero
literal of type double is4.9e-324.

A compile-time error occurs if a nonzero floating-point literal is too large, so
that on rounded conversion to its internal representation it becomes an |IEEE 754
infinity. A program can represent infinities without producing a compile-time
error by using constant expressions such as 1f/0f or -1d/0d or by using the pre-
defined constants POSITIVE_INFINITY and NEGATIVE_INFINITY of the classes
Float and DoubTe.

A compile-time error occursif anonzero floating-point literal istoo small, so
that, on rounded conversion to its internal representation, it becomes a zero. A
compile-time error does not occur if a nonzero floating-point literal has a small
value that, on rounded conversion to its internal representation, becomes a non-
zero denormalized number.

Predefined constants representing Not-a-Number values are defined in the
classes Float and Double as Float.NaN and DoubTe.NaN.

Examples of fl1oat literals:

lelf2.f.3f0f3.14f6.022137e+23f

Examples of double literas:

lel2..30.03.141e-9d1el137

Besides expressing floating-point values in decima and hexadecimal, the
method intBitsToFloat of class Float and method TongBitsToDouble of
classDoubTe provide away to express floating-point values in terms of hexadeci-
mal or octal integer literals.For example, the value of:

DoubTe.longBitsToDoubTe(0x400921FB54442D18L)
isequal to the value of Math.PI.

3.10.3 Boolean Literals

The boolean type has two values, represented by the literals true and false,
formed from ASCI| letters.
A boolean literal is always of type boolean.

BooleanLiteral: one of
true false

3.10.4 Character Literals

A character literal is expressed as a character or an escape sequence, enclosed in
ASCII single quotes. (The single-quote, or apostrophe, character is \u0027.)

LEXICAL STRUCTURE Character Literals

Character literals can only represent UTF-16 code units (83.1), i.e., they are lim-
ited to values from \u0000 to \uffff. Supplementary characters must be repre-
sented either as a surrogate pair within a char sequence, or as an integer,
depending on the API they are used with.

A character literal is aways of type char.

CharacterLiteral:
' SngleCharacter
' EscapeSequence '

SngleCharacter:
InputCharacter but not ' or \

The escape sequences are described in §3.10.6.

As specified in 83.4, the characters CR and LF are never an InputCharacter ;
they are recognized as constituting a LineTer minator.

It is a compile-time error for the character following the SingleCharacter or
EscapeSequence to be other thana .

It is a compile-time error for a line terminator to appear after the opening
and beforethe closing '.

Thefollowing are examples of char literals:

'a

"\t

:\\'

"\u03a9’'

"\UFFFF'

'"\177"'

] Q]

] ®]

Because Unicode escapes are processed very early, it is not correct to write
'\u000a" for a character literal whose value is linefeed (LF); the Unicode escape
\u000a is transformed into an actual linefeed in trandlation step 1 (83.3) and the
linefeed becomes a LineTerminator in step 2 (83.4), and so the character litera is
not valid in step 3. Instead, one should use the escape sequence '\n' (§3.10.6).
Similarly, it is not correct to write '\u000d"' for a character literal whose valueis
carriage return (CR). Instead, use '\r"'.

In C and C++, a character literal may contain representations of more than
one character, but the value of such a character literal is implementation-defined.
In the Java programming language, a character literal aways represents exactly
one character.

3.104

27

3.10.5 Sring Literals LEXICAL STRUCTURE

28

3.10.5 StringLiterals

A string literal consists of zero or more characters enclosed in double quotes.
Characters may be represented by escape sequences - one escape sequence for
characters in the range U+0000 to U+FFFF, two escape sequences for the UTF-16
surrogate code units of charactersin the range U+010000 to U+10FFFF.

A string literal isalways of type String (84.3.3). A string literal awaysrefers
to the same instance (84.3.1) of class String.

SringLiteral:
" SringCharactersyy "

SringCharacters:
SringCharacter
SringCharacters SringCharacter

SringCharacter:
InputCharacter but not " or \
EscapeSequence

The escape sequences are described in §3.10.6.

As specified in 83.4, neither of the characters CR and LF is ever considered to
be an InputCharacter ; each is recognized as congtituting a LineTerminator.

It is a compile-time error for a line terminator to appear after the opening "
and before the closing matching ". A long string literal can always be broken up
into shorter pieces and written as a (possibly parenthesized) expression using the
string concatenation operator + (815.18.1).

The following are examples of string literals:

// the empty string

T\ // astring containing " aone
"This is a string" // astring containing 16 characters
"This is a " + // actualy astring-valued constant expression,

"two-1ine string" // formed from two string literals

Because Unicode escapes are processed very early, it is not correct to write
"\u000a" for astring literal containing asingle linefeed (LF); the Unicode escape
\u000a is transformed into an actual linefeed in tranglation step 1 (83.3) and the
linefeed becomes a LineTerminator in step 2 (83.4), and so the string literal is not
valid in step 3. Instead, one should write "\n" (83.10.6). Similarly, it is not correct
to write "\u000d" for a string literal containing a single carriage return (CR).
Instead use "\r".

Each string literal is areference (84.3) to an instance (84.3.1, §12.5) of class
String (84.3.3). String objects have a constant value. String literals—or, more

LEXICAL STRUCTURE String Literals

generally, strings that are the values of constant expressions (§15.28)—are
“interned” so as to share unique instances, using the method String.intern.
Thus, the test program consisting of the compilation unit (8§7.3):

package testPackage;

class Test {
public static void main(String[] args) {

String hello = "Hello", 1o = "lo";
System.out.print((hello == "Hello") + " '");
System.out.print((Other.hello == hello) + " ");
System.out.print((other.Other.hello == hello) + " ");
System.out.print((hello == ("Hel"+"10™)) + " ");
System.out.print(Chello == ("Hel"+10)) + " ™);
System.out.printin(hello == ("Hel"+10).intern());

3
class Other { static String hello = "Hello"; }
and the compilation unit:
package other;
public class Other { static String hello = "Hello"; }

produces the output:
true true true true false true
Thisexampleillustrates six points:

* Literal strings within the same class (88) in the same package (87) represent
referencesto the same String object (84.3.1).

e Literal strings within different classes in the same package represent refer-
ences to the same String object.

» Literal strings within different classesin different packages likewise represent
references to the same String object.

* Strings computed by constant expressions (815.28) are computed at compile
time and then treated as if they were literals.

* Strings computed by concatenation at run time are newly created and there-
fore distinct.

The result of explicitly interning a computed string is the same string as any
pre-existing literal string with the same contents.

3.10.5

29

3.10.6 Escape Sequences for Character and String Literals LEXICAL STRUCTURE

30

3.10.6 Escape Sequencesfor Character and String Literals

The character and string escape sequences allow for the representation of some
nongraphic characters as well as the single quote, double quote, and backslash
charactersin character literals (§83.10.4) and string literals (§3.10.5).

EscapeSequence:
\ b /* \u0008: backspace BS */
\ t /* \u0009: horizontal tab HT */
\ n /* \u000a: linefeed LF */
\ f /* \u000c: formfeed FF */
\ r /* \u000d: carriage return CR */
\ " /* \u0022: double quote " */
\ /* \u0027: singlequote ' */
\ O\ /* \u005c: backslash\ */
Octal Escape /* \u0000 to \uooff: from octal value */
Octal Escape:
\ OctalDigit

\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

OctalDigit: one of
01234567

ZeroToThree: one of
0123

It isacompile-time error if the character following a backslash in an escapeis
notan ASCll b, t,n, f, r,", ',\,0,1, 2, 3,4, 5, 6,0r 7. The Unicode escape \u is
processed earlier (83.3). (Octal escapes are provided for compatibility with C, but
can express only Unicode values \u0000 through \uOOFF, so Unicode escapes are
usually preferred.)

3.10.7 TheNull Literal

The null type has one value, the null reference, represented by the literal null,
which isformed from ASCII characters. A null literal is always of the null type.

NullLiteral:
null

LEXICAL STRUCTURE Operators

3.11 Separators

Thefollowing nine ASCII characters are the separators (punctuators):

Separator: one of
() { 3 [1 ;)
3.12 Operators

Thefollowing 37 tokens are the operators, formed from ASCII characters:

Operator: one of

= > < ! ~ ? :
= <= >= 1= & || ++ --

- # / & | A % << >> >>>
= -= *= /= &= [= A= %= <<= >>= >>>=

312

31

3.12 Operators LEXICAL STRUCTURE

32

CHAPTER I

H Types, Values, and Variables

THE Java programming language is a strongly typed language, which means
that every variable and every expression has atype that is known at compile time.
Types limit the values that a variable (84.12) can hold or that an expression can
produce, limit the operations supported on those values, and determine the mean-
ing of the operations. Strong typing helps detect errors at compile time.

The types of the Java programming language are divided into two categories:
primitive types and reference types. The primitive types (84.2) are the boolean
type and the numeric types. The numeric types are the integral typesbyte, short,
int, long, and char, and the floating-point types float and double. The refer-
ence types (84.3) are class types, interface types, and array types. Thereisalso a
specia null type. An object (84.3.1) is a dynamically created instance of a class
type or adynamically created array. The values of areference type are references
to objects. All objects, including arrays, support the methods of class Object
(84.3.2). String literals are represented by String objects (84.3.3).

Types exist at compile-time. Some types correspond to classes and interfaces,
which exist at run-time. The correspondence between types and classes or inter-
facesisincomplete for two reasons:

33

4.1

The Kinds of Types and Values TYPES VALUES AND VARIABLES

1. Atrun-time, classes and interfaces are loaded by the Java virtual machine
using class loaders. Each class loader defines its own set of classes and inter-
faces. Asaresult, it is possible for two loadersto load an identical class or
interface definition but produce distinct classes or interfaces at run-time.

2. Typearguments and type variables (84.4) are not reified at run-time. Asa
result, different parameterized types (84.5) are implemented by the same class
or interface at run time. Indeed, all invocations of a given generic type decla
ration (88.1.2, 89.1.2)share a single run-time implementation.

A consequence of (1) isthat code that compiled correctly may fail at link time
if the class loaders that load it are inconsistent. See the paper Dynamic Class
Loading in the Java. Virtual Machine, by Sheng Liang and Gilad Bracha, in Pro-
ceedings of OOPSLA '98, published as ACM SIGPLAN Notices, Volume 33,
Number 10, October 1998, pages 36-44, and The Java~ Virtual Machine Specifi-
cation, Second Edition for more details.

A consequence of (2) is the possibility of heap pollution (84.12.2.1). Under
certain conditions, it is possible that a variable of a parameterized type refersto an
object that is not of that parameterized type. The variable will aways refer to an
object that is an instance of a class that implements the parameterized type. See
(84.12.2) for further discussion.

4.1 TheKindsof Typesand Values

There are two kinds of types in the Java programming language: primitive types
(84.2) and reference types (84.3). There are, correspondingly, two kinds of data
values that can be stored in variables, passed as arguments, returned by methods,
and operated on: primitive values (84.2) and reference values (84.3).

Type:
PrimitiveType
ReferenceType

Thereisaso aspecial null type, the type of the expression nu11, which hasno
name. Because the null type has no name, it isimpossible to declare a variable of
the null type or to cast to the null type. The null reference is the only possible
value of an expression of null type. The null reference can always be cast to any
reference type. In practice, the programmer can ignore the null type and just pre-
tend that nu11 ismerely a special literal that can be of any reference type.

TYPES, VALUES AND VARIABLES Integral Types and Values

4.2 Primitive Typesand Values

A primitive type is predefined by the Java programming language and named by
its reserved keyword (83.9):

PrimitiveType:
NumericType
boolean

NumericType:
Integral Type
FloatingPointType

Integral Type: one of
byte short int Tong char

FloatingPointType: one of
float double

Primitive values do not share state with other primitive values. A variable
whose type is a primitive type always holds a primitive value of that same type.
The value of avariable of primitive type can be changed only by assignment oper-
ations on that variable (including increment (815.14.2, §15.15.1) and decrement
(815.14.3, 815.15.2) operators).

The numeric types are the integral types and the floating-point types.

The integral types are byte, short, int, and Tong, whose values are 8-hit,
16-bit, 32-bit and 64-bit signed two's-complement integers, respectively, and
char, whose values are 16-bit unsigned integers representing UTF-16 code units
(83.2).

The floating-point types are f1oat, whose values include the 32-bit IEEE 754
floating-point numbers, and double, whose values include the 64-bit IEEE 754
floating-point numbers.

The boolean type has exactly two values: true and false.

4.2.1 Integral Typesand Values
The values of the integral types are integers in the following ranges:
» For byte, from-128to 127, inclusive
* For short, from —32768 to 32767, inclusive
» For int, from —2147483648 to 2147483647, inclusive
* For Tong, from —9223372036854775808 to 9223372036854775807, inclusive

421

35

4.2.2

36

Integer Operations TYPES, VALUES, AND VARIABLES

e For char, from '\u0000"' to '\uffff' inclusive, that is, from O to 65535

4.2.2 Integer Operations

The Java programming language provides a number of operators that act on inte-
gral values:

» The comparison operators, which result in avalue of type boolean:
o The numerical comparison operators <, <=, >, and >= (815.20.1)
o The numerical equality operators == and != (815.21.1)
» The numerical operators, which result in avalue of type int or Tong:
o The unary plus and minus operators + and - (815.15.3, §15.15.4)
o The multiplicative operators *, /, and % (815.17)
o The additive operators + and - (§15.18)
o Theincrement operator ++, both prefix (815.15.1) and postfix (815.14.2)
o The decrement operator - -, both prefix (815.15.2) and postfix (815.14.3)
o The signed and unsigned shift operators <<, >>, and >>> (§15.19)
o The bitwise complement operator ~ (815.15.5)
o Theinteger bitwise operators &, |, and A (815.22.1)
» The conditional operator ? : (815.25)

» The cast operator, which can convert from an integral value to a value of any
specified numeric type (85.5, §15.16)

» The string concatenation operator + (815.18.1), which, when given a String
operand and an integral operand, will convert the integral operandto aString
representing its value in decimal form, and then produce a newly created
String that is the concatenation of the two strings

Other useful constructors, methods, and constants are predefined in the classes
Byte, Short, Integer, Long, and Character.

If an integer operator other than a shift operator has at least one operand of
type Tong, then the operation is carried out using 64-bit precision, and the result
of the numerical operator is of type Tong. If the other operand is not Tong, it is
first widened (85.1.5) to type 1ong by numeric promotion (85.6). Otherwise, the
operation is carried out using 32-hit precision, and the result of the numerical

TYPES, VALUES AND VARIABLES Floating-Point Types, Formats, and Values

operator is of type int. If either operand is not an int, it isfirst widened to type
int by numeric promotion.

The built-in integer operators do not indicate overflow or underflow in any
way. Integer operators can throw aNul1PointerException if unboxing conver-
sion (85.1.8) of anull reference is required. Other than that, the only integer oper-
atorsthat can throw an exception (811) are the integer divide operator / (815.17.2)
and the integer remainder operator % (815.17.3), which throw an ArithmeticEx-
ception if the right-hand operand is zero, and the increment and decrement oper-
ators ++(815.15.1, §15.15.2) and --(815.14.3, 815.14.2), which can throw an
OutOfMemoryError if boxing conversion (85.1.7) is required and there is not suf-
ficient memory available to perform the conversion.

The example:

class Test {

public static void main(String[] args) {
int i = 1000000;
System.out.printin(i * 1i);
Tong 1 = 1;
System.out.printin(l * 1);
System.out.printin(20296 / (1 - 1i));

3

}

produces the output:

-727379968
1000000000000

and then encounters an ArithmeticException inthedivision by 1 - i, because
1 - 1 iszero. Thefirst multiplication is performed in 32-bit precision, whereas the
second multiplication isa Tong multiplication. The value -727379968 is the deci-
mal value of the low 32 bits of the mathematical result, 1000000000000, whichis
avaluetoo large for type int.

Any value of any integral type may be cast to or from any numeric type. There
are no casts between integral types and the type boolean.

4.2.3 Floating-Point Types, Formats, and Values

The floating-point types are float and double, which are conceptually associ-
ated with the single-precision 32-bit and double-precision 64-bit format |EEE 754
values and operations as specified in |IEEE Sandard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 754-1985 (IEEE, New York).

The IEEE 754 standard includes not only positive and negative numbers that
consist of asign and magnitude, but also positive and negative zeros, positive and
negative infinities, and special Not-a-Number values (hereafter abbreviated NaN).

4.2.3

37

4.2.3

38

Floating-Point Types, Formats, and Values TYPES VALUES AND VARIABLES

A NaN value is used to represent the result of certain invalid operations such as
dividing zero by zero. NaN constants of both float and double type are pre-
defined as Float.NaN and Double.NaN.

Every implementation of the Java programming language is required to sup-
port two standard sets of floating-point values, called the float value set and the
double value set. In addition, an implementation of the Java programming lan-
guage may support either or both of two extended-exponent floating-point value
sets, caled the float-extended-exponent value set and the doubl e-extended-expo-
nent value set. These extended-exponent value sets may, under certain circum-
stances, be used instead of the standard value sets to represent the values of
expressions of type float or double (85.1.13, §15.4).

The finite nonzero values of any floating-point value set can all be expressed
intheform s- m-2(e-N*1) 'where sis+1 or —1, mis a positive integer less than
2N, and eisaninteger between £, = —<(2K-1-2) and £, , = 2K-1-1inclu-
sive, and where N and K are parameters that depend on the value set. Some values
can be represented in this form in more than one way; for example, supposing that
avaluevin avaue set might be represented in thisform using certain valuesfor s,
m, and e, then if it happened that m were even and e were less than 2€-1 | one
could halve mand increase e by 1 to produce a second representation for the same
value v. A representation in this form is called normalized if m>2®-1; other-
wise the representation is said to be denormalized. If avalue in a value set cannot
be represented in such away that m >2(®-1 then the value is said to be adenor-
malized value, because it has no normalized representation.

The constraints on the parameters N and K (and on the derived parameters
Enin @and Engy) for the two required and two optional floating-point value sets are
summarized in Table 4.1.

Parameter | float floz;t)zsét]egnc:ed- double dout()a!xer-)gﬁgnerl[ded-
N 24 24 53 53
K 8 >11 11 >15
Emax +127 > +1023 +1023 [>+16383
Emin -126 <-1022 -1022 [<-16382

Table4.1 Floating-point value set parameters

Where one or both extended-exponent value sets are supported by an imple-
mentation, then for each supported extended-exponent value set there is a specific
implementation-dependent constant K, whose value is constrained by Table 4.1,
thisvalue K in turn dictates the values for Epyip, and Eppgy.

TYPES, VALUES AND VARIABLES Floating-Point Types, Formats, and Values

Each of the four value sets includes not only the finite nonzero values that are
ascribed to it above, but also NaN values and the four values positive zero, nega-
tive zero, positive infinity, and negative infinity.

Note that the constraintsin Table 4.1 are designed so that every element of the
float value set is necessarily also an element of the float-extended-exponent value
set, the double value set, and the double-extended-exponent value set. Likewise,
each element of the double value set is necessarily also an element of the double-
extended-exponent value set. Each extended-exponent value set has alarger range
of exponent values than the corresponding standard value set, but does not have
more precision.

The elements of the float value set are exactly the values that can be repre-
sented using the single floating-point format defined in the IEEE 754 standard.
The elements of the double value set are exactly the values that can be represented
using the double floating-point format defined in the IEEE 754 standard. Note,
however, that the elements of the float-extended-exponent and double-extended-
exponent val ue sets defined here do not correspond to the values that can be repre-
sented using |EEE 754 single extended and double extended formats, respectively.

The float, float-extended-exponent, double, and double-extended-exponent
value sets are not types. It is always correct for an implementation of the Java pro-
gramming language to use an element of the float value set to represent a value of
type float; however, it may be permissible in certain regions of code for an
implementation to use an element of the float-extended-exponent value set
instead. Similarly, it is always correct for an implementation to use an element of
the double value set to represent a value of type double; however, it may be per-
missible in certain regions of code for an implementation to use an element of the
double-extended-exponent value set instead.

Except for NaN, floating-point values are ordered; arranged from smallest to
largest, they are negative infinity, negative finite nonzero values, positive and neg-
ative zero, positive finite nonzero values, and positive infinity.

|EEE 754 alows multiple distinct NaN values for each of its single and dou-
ble floating-point formats. While each hardware architecture returns a particular
bit pattern for NaN when a new NaN is generated, a programmer can also create
NaNs with different bit patterns to encode, for example, retrospective diagnostic
information.

For the most part, the Java platform treats NaN values of a given type as
though collapsed into a single canonical value (and hence this specification nor-
mally refersto an arbitrary NaN as though to acanonical value). However, version
1.3 the Java platform introduced methods enabling the programmer to distinguish
between NaN values: the Float.floatToRawIntBits and Double.double-
ToRawlLongB1its methods. The interested reader is referred to the specifications
for the Float and Doub1e classes for more information.

4.2.3

39

424

40

Floating-Point Operations TYPES VALUES AND VARIABLES

Positive zero and negative zero compare equal; thus the result of the expres-
sion 0.0==-0.0 is true and the result of 0.0>-0.0 is false. But other opera-
tions can distinguish positive and negative zero; for example, 1.0/0.0 has the
value positive infinity, while the value of 1.0/-0.0 is negative infinity.

NaN is unordered, so the numerical comparison operators <, <=, >, and >=
return false if either or both operands are NaN (815.20.1). The equality operator
== returns false if either operand is NaN, and the inequality operator != returns
true if either operand isNaN (815.21.1). In particular, x!=x iSs true if and only if
x isNaN, and (x<y) == ! (x>=y) will be false if x or y isNaN.

Any value of afloating-point type may be cast to or from any numeric type.
There are no casts between floating-point types and the type boolean.

4.2.4 Floating-Point Operations

The Java programming language provides a number of operators that act on float-
ing-point values:

» The comparison operators, which result in a value of type boolean:
o The numerical comparison operators <, <=, >, and >= (815.20.1)
o The numerical equality operators== and != (815.21.1)
» The numerical operators, which result in avalue of type float or double:
o The unary plus and minus operators + and - (815.15.3, 815.15.4)
o The multiplicative operators *, /, and % (815.17)
o The additive operators + and - (815.18.2)
o Theincrement operator ++, both prefix (815.15.1) and postfix (815.14.2)
o The decrement operator --, both prefix (815.15.2) and postfix (815.14.3)
» The conditional operator ? : (815.25)

» The cast operator, which can convert from a floating-point value to a value of
any specified numeric type (85.5, §15.16)

» The string concatenation operator + (815.18.1), which, when given a String
operand and a floating-point operand, will convert the floating-point operand
to aString representing its value in decimal form (without information loss),
and then produce a newly created String by concatenating the two strings

Other useful constructors, methods, and constants are predefined in the classes
Float, Double, and Math.

TYPES, VALUES AND VARIABLES Floating-Point Operations

If at least one of the operands to a binary operator is of floating-point type,
then the operation is afloating-point operation, even if the other isintegral.

If at least one of the operands to a numerical operator is of type doubTe, then
the operation is carried out using 64-bit floating-point arithmetic, and the result of
the numerical operator is a value of type double. (If the other operand is not a
double, it is first widened to type double by numeric promotion (85.6).) Other-
wise, the operation is carried out using 32-bit floating-point arithmetic, and the
result of the numerical operator is avalue of type float. If the other operand is
not a float, it isfirst widened to type float by numeric promotion.

Operators on floating-point numbers behave as specified by IEEE 754 (with
the exception of the remainder operator (815.17.3)). In particular, the Java pro-
gramming language requires support of IEEE 754 denormalized floating-point
numbers and gradual underflow, which make it easier to prove desirable proper-
ties of particular numerical algorithms. Floating-point operations do not “flush to
zero” if the calculated result is a denormalized number.

The Java programming language requires that floating-point arithmetic
behave as if every floating-point operator rounded its floating-point result to the
result precision. Inexact results must be rounded to the representable value nearest
to the infinitely precise result; if the two nearest representable values are equally
near, the one with itsleast significant bit zero is chosen. Thisisthe |EEE 754 stan-
dard's default rounding mode known as round to nearest.

The language uses round toward zero when converting a floating value to an
integer (85.1.3), which acts, in this case, as though the number were truncated,
discarding the mantissa bits. Rounding toward zero chooses at its result the for-
mat’s value closest to and no greater in magnitude than the infinitely precise
result.

Floating-point operators can throw a NulT1PointerException if unboxing
conversion (85.1.8) of anull reference is required. Other than that, the only float-
ing-point operators that can throw an exception (811) are the increment and decre-
ment operators ++(815.15.1, §15.15.2) and --(815.14.3, §15.14.2), which can
throw an QutOfMemoryError if boxing conversion (85.1.7) is required and there
is not sufficient memory available to perform the conversion.

An operation that overflows produces a signed infinity, an operation that
underflows produces a denormalized value or a signed zero, and an operation that
has no mathematically definite result produces NaN. All numeric operations with
NaN as an operand produce NaN as aresult. As has aready been described, NaN
is unordered, so a numeric comparison operation involving one or two NaNs
returns false and any != comparison involving NaN returns true, including
x!=x when x is NaN.

The example program:

class Test {

424

41

4.2.4 Floating-Point Operations TYPES, VALUES AND VARIABLES

public static void main(String[] args) {
// Anexample of overflow:

double d = 1e308;
System.out.print("overflow produces infinity: ");
System.out.printin(d + "*10==" + d*10);
// Anexample of gradual underflow:
d = 1e-305 * Math.PI;
System.out.print("gradual underflow: " + d + "\n ")
for (int i =0; i < 4; i++)

System.out.print(" " + (d /= 100000));
System.out.println();
// An example of NaN:

System.out.print("0.0/0.0 is Not-a-Number: ");
d=0.0/0.0;

System.out.printin(d);

// An example of inexact results and rounding:

System.out.print("inexact results with float:");
for (int i = 0; i < 100; i++) {

float z = 1.0f / 1i;

if (z * 1 != 1.0

System.out.print(

L1 " + _i);
b
System.out.printin();

// Another example of inexact results and rounding:
System.out.print("inexact results with double:");
for (int i =0; i < 100; i++) {
double z = 1.0 / 1i;
if (z * 1 !'=1.0)
System.out.print(

L1 " + _i);
b
System.out.printin();

// Anexample of cast to integer rounding:
System.out.print("cast to int rounds toward 0: ");

d = 12345.6;
System.out.printin((intdd + " " + (int)(-d));
}
3
produces the output:

overflow produces infinity: 1.0e+308*10==Infinity

gradual underflow: 3.141592653589793E-305
3.1415926535898E-310 3.141592653E-315 3.142E-320 0.0

0.0/0.0 1is Not-a-Number: NaN

inexact results with float: 0 41 47 55 61 82 83 94 97

inexact results with double: 0 49 98

cast to int rounds toward 0: 12345 -12345

42

TYPES, VALUES, AND VARIABLES The boolean Type and boolean Values

This example demonstrates, among other things, that gradual underflow can
result in agradual loss of precision.

The results when 1 is 0 involve division by zero, so that z becomes positive
infinity, and z * 0 is NaN, which isnot equal to 1. 0.

4.25 Theboolean Type and boolean Values

The boolean type represents a logical quantity with two possible values, indi-
cated by theliterals true and false (83.10.3). The boolean operators are:

» Therelational operators== and != (815.21.2)

» Thelogica-complement operator ! (815.15.6)

» Thelogica operators &, A, and | (§15.22.2)

* The conditional-and and conditional-or operators && (815.23) and | | (815.24)
» The conditional operator ? : (815.25)

» The string concatenation operator + (815.18.1), which, when given a String
operand and a boolean operand, will convert the boolean operandto aString
(either "true" or "false"), and then produce a newly created String that is
the concatenation of the two strings

Boolean expressions determine the control flow in several kinds of statements:
e Theif statement (§14.9)
* Thewhile statement (§14.12)
e The do statement (8§14.13)
* The for statement (§14.14)

A boolean expression also determines which subexpression is evaluated in the
conditional ? : operator (815.25).

Only booTean or Boolean expressions can be used in control flow statements
and as the first operand of the conditional operator ? :. An integer x can be con-
verted to aboolean, following the C language convention that any nonzero value
is true, by the expression x!=0. An object reference obj can be converted to a
boolean, following the C language convention that any reference other than nu11
istrue, by the expression obj !=null.

A cast of aboolean value to type boolean or Boolean is alowed (85.1.1);
no other casts on type boolean are alowed. A boolean can be converted to a
string by string conversion (85.4).

4.2.5

43

4.3

Reference Types and Values TYPES VALUES, AND VARIABLES

4.3 Reference Typesand Values

There are three kinds of reference types:. class types (88), interface types (89), and
array types (810). Reference types may be parameterized (84.5) with type argu-
ments (84.4).

ReferenceType:
ClassOr|InterfaceType
TypeVariable
ArrayType

ClassOr|nterfaceType:
ClassType
InterfaceType

ClassType:
TypeDecl Soecifier TypeArgumentsyp

InterfaceType:
TypeDecl Soecifier TypeArgumentsyp

TypeDecl Specifier:
TypeName
ClassOrInterfaceType . Identifier

TypeName:
Identifier
TypeName . |dentifier

TypeVariable:
I dentifier

ArrayType:
Type []

A class or interface type consists of a type declaration specifier, optionally fol-
lowed by type arguments (in which case it is a parameterized type). Type argu-
ments are described in (84.5.1).

A type declaration specifier may be either a type name (86.5.5), or a class or
interface type followed by "." and an identifier. In the latter case, the specifier has
the form T.id, where id must be the simple name of an accessible (86.6) mem-
ber type (88.5, §9.5) of T, or a compile-time error occurs. The specifier denotes
that member type.

TYPES, VALUES AND VARIABLES Objects

The sample code:

class Point { int[] metrics; }
interface Move { void move(int deltax, int deltay); }

declares a class type Point, an interface type Move, and uses an array type int[]
(anarray of int) to declarethe field metrics of the class Point.

4.3.1 Objects

An object isaclassinstance or an array.

The reference values (often just references) are pointersto these objects, and a
specia null reference, which refersto no object.

A class instance is explicitly created by a class instance creation expression
(815.9). An array is explicitly created by an array creation expression (815.10).

A new classinstance isimplicitly created when the string concatenation oper-
ator + (815.18.1) is used in a non-constant (815.28) expression, resulting in a new
object of type String (84.3.3). A new array object isimplicitly created when an
array initializer expression (810.6) is evaluated; this can occur when a class or
interface is initialized (812.4), when a new instance of a class is created (§15.9),
or when alocal variable declaration statement is executed (814.4). New objects of
the types Boolean, Byte, Short, Character, Integer, Long, Float and Double may be
implicitly created by boxing conversion (85.1.7).

Many of these cases areillustrated in the following example:

class Point {

int x, y;

Point() { System.out.println("default"); }

Point(int x, int y) { this.x = x; this.y = vy; }

// A Point instanceis explicitly created at classinitialization time;
static Point origin = new Point(0,0);

// A String can beimplicitly created by a+ operator:

public String toString() {

}

return "(" + x + ",)" +y +")";

}

class Test {
public static void main(String[] args) {
// A Point isexplicitly created using newInstance:
Point p = null;
try {
p = (Point)Class.forName("Point").newInstance();
} catch (Exception e) {
System.out.println(e);
3

431

45

431

46

Objects TYPES, VALUES, AND VARIABLES

// Anarray isimplicitly created by an array constructor:
Point a[] = { new Point(0,0), new Point(1,1) };

// Stringsareimplicitly created by + operators:
System.out.printin("p: " + p);
System.out.println("a: { " + a[0] + ",
+all] + " }");

// Anarray isexplicitly created by an array creation expression:
String sal[] = new String[2];
sa[0] = "he"; sa[l1l] = "110";
System.out.println(sa[0] + sa[l]);

}

}

which produces the outpuit:
default
p: (0,0)

a: { (0,00, (1,1 3}
hello

The operators on references to objects are:

 Field access, using either a qualified name (86.6) or a field access expression
(815.11)

» Method invocation (§15.12)
» The cast operator (85.5, §15.16)

» The string concatenation operator + (815.18.1), which, when given a String
operand and a reference, will convert the reference to a String by invoking
the toString method of the referenced object (using "nu11" if either the ref-
erence or the result of toString isanull reference), and then will produce a
newly created String that isthe concatenation of the two strings

» Theinstanceof operator (815.20.2)
» Thereference equality operators == and != (815.21.3)
» The conditional operator ? : (815.25).

There may be many references to the same object. Most objects have state,
stored in the fields of objects that are instances of classes or in the variables that
are the components of an array object. If two variables contain references to the
same abject, the state of the object can be modified using one variable's reference
to the object, and then the atered state can be observed through the reference in
the other variable.

TYPES, VALUES AND VARIABLES The Class Object

The exampl e program:
class Value { int val; }
class Test {
public static void main(String[] args) {

int il = 3;
int i2 = 1il;
i2 = 4;

System.out.print("il==" + il);
System.out.println(" but i2==" + i2);
Value vl = new Value();

vl.val = 5;

Value v2 =

v2.val = 6;
System.out.print("vl.val==
System.out.printIn(" and v2.val==

vl;

+ vl.val);
"+ v2.val);

}

produces the output:
i1==3 but i2==4
vl.val==6 and v2.val==

because v1.val and v2.val reference the same instance variable (84.12.3) in the
one Value object created by the only new expression, while i1 and i2 are differ-
ent variables.

See 8§10 and §15.10 for examples of the creation and use of arrays.

Each object has an associated lock (8§17.1), which is used by synchronized
methods (88.4.3) and the synchronized statement (§814.19) to provide control
over concurrent access to state by multiple threads (817).

4.3.2 TheClass Object

The class Object is a superclass (88.1) of all other classes. A variable of type
Object can hold areference to the null reference or to any object, whether it isan
instance of aclass or an array (810). All class and array types inherit the methods
of classObject, which are summarized here:

package java.lang;

public class Object {
public final Class<?> getClass() { ... }
public String toString() { ... }
public boolean equals(Object obj) { ... }
public int hashCode() { ... }
protected Object clone()
throws CloneNotSupportedException { ... }

4.3.2

47

433

48

The Class String TYPES, VALUES, AND VARIABLES

public final void wait()
throws I1legalMonitorStateException,
InterruptedException { ... }
public final void wait(long millis)
throws I1legalMonitorStateException,

InterruptedException { ... }
public final void wait(long millis, int nanos) { ... }
throws I1legalMonitorStateException,
InterruptedException { ... }

public final void notify() { ... }
throws I1legalMonitorStateException
public final void notifyAl1() { ... }
throws I1legalMonitorStateException
protected void finalize()
throws Throwable { ... }
}

The members of Object are asfollows:

» The method getClass returns the Class object that represents the class of
the abject. A Class object exists for each reference type. It can be used, for
example, to discover the fully qualified name of a class, its members, its
immediate superclass, and any interfaces that it implements. A class method
that is declared synchronized (88.4.3.6) synchronizes on the lock associated
with the Class object of the class. The method Object.getClass() must be
treated specialy by a Java compiler. The type of amethod invocation e. get-
Class (), where the expression e has the static type T, is Class<? extends
[T|>.

» The method toString returnsaString representation of the object.

* The methods equals and hashCode are very useful in hashtables such as
java.util.Hashtable. The method equals defines a notion of object
equality, which is based on value, not reference, comparison.

» The method clone is used to make a duplicate of an object.

» The methodswait, notify, and notifyAll are used in concurrent program-
ming using threads, as described in §17.

* The method finalize is run just before an object is destroyed and is
described in §12.6.

4.3.3 TheClassString

Instances of class String represent sequences of Unicode characters. A String
object has a constant (unchanging) value. String literals (83.10.5) are referencesto
instances of class String.

TYPES, VALUES AND VARIABLES Type Variables

The string concatenation operator + (815.18.1) implicitly creates a new
String object when the result is not a compile-time constant (§15.28).

4.3.4 When Reference Types Arethe Same

Two reference types are the same compile-time type if they have the same binary
name (813.1) and their type parameters, if any, are the same, applying this defini-
tion recursively. When two reference types are the same, they are sometimes said
to be the same class or the same interface.

At run time, several reference types with the same binary name may be loaded
simultaneoudly by different class loaders. These types may or may not represent
the same type declaration. Even if two such types do represent the same type dec-
laration, they are considered distinct.

Two reference types are the same run-time type if:

» They are both class or both interface types, are defined by the same class
loader, and have the same binary name (813.1), in which case they are some-
times said to be the same run-time class or the same run-time interface.

» They are both array types, and their component types are the same run-time
type(810).

4.4 TypeVariables

A type variable (84.4) is an unqualified identifier. Type variables are introduced
by generic class declarations (88.1.2) generic interface declarations (89.1.2)
generic method declarations (88.4.4) and by generic constructor declarations
(88.8.4).

TypeParameter:
TypeVariable TypeBoundqy

TypeBound:
extends ClassOrInterfaceType Additional BoundListypy

Additional BoundList;
Additional Bound Additional BoundList
Additional Bound

Additional Bound:
& InterfaceType

4.4

49

4.4

50

Type Variables TYPES, VALUES, AND VARIABLES

Type variables have an optional bound, T & 17 ... 1. The bound consists of
either a type variable, or a class or interface type T possibly followed by further
interface types 11 , ..., In. If no bound is given for a type variable, Object is
assumed. It is a compile-time error if any of thetypes 14 ... 1, isaclasstype or
type variable. The erasures (84.6) of all constituent types of a bound must be pair-
wise different, or a compile-time error occurs. The order of types in a bound is
only significant in that the erasure of atype variable is determined by the first type
in its bound, and that a class type or type variable may only appear in the first
position.

A type variable may not at the same time be a subtype of two interface types
which are different parameterizations of the same generic interface.

See section 86.3 for the rules defining the scope of type variables.

The members of atype variable X with bound T & 11 ... 1, are the members
of the intersection type (84.9) T & 11 ... 1, appearing at the point where the type
variable is declared.

DiscussioN

The following example illustrates what members a type variable has.
package TypeVarMembers;

class C {
void mCDefault() {}
public void mCPublic() {}
private void mCPrivate() {}
protected void mCProtected() {}
h

class CT extends C implements I {}

interface I {

void mIQ); }

<T extends C & I> void test(T t) {
.mIQ; // OK
.mCDefault(); // OK
.mCPublic(Q); // OK
.mCPrivate(); // compile-time error
.mCProtected(); // OK

+ ettt

}
}

The type variable T has the same members as the intersection type C & I, which in
turn has the same members as the empty class CT, defined in the same scope with equiv-
alent supertypes. The members of an interface are always public, and therefore always
inherited (unless overridden). Hence ml is a member of CT and of T. Among the members
of C, all but mCPrivate are inherited by CT, and are therefore members of both CTand T.

TYPES, VALUES AND VARIABLES Parameterized Types

If C had been declared in a different package than T, then the call to mCDefault
would give rise to a compile-time error, as that member would not be accessible at the point
where T is declared.

45 Parameterized Types

A parameterized type consists of a class or interface name € and an actua
type argument list <11 , ... , Tp>. Itisacompiletime error if C is not the
name of a generic class or interface, or if the number of type arguments in the
actual type argument list differs from the number of declared type parameters of
C. Inthefollowing, whenever we speak of aclass or interface type, we include the
generic version aswell, unless explicitly excluded. Throughout this section, let A1
. --- » Ay betheformal type parameters of C, and let be B; be the declared
bound of A;. The notation [A; := T;] denotes substitution of the type variable A;
with thetype Tj, for 1 <i<n», andisused throughout this specification.

LetP = G<T1, ..., Tp> beaparameterized type. It must be the case that,
after P is subjected to capture conversion (85.1.10) resulting in the type G<x1,

.., Xn>, for each actual typeargument Xj, 1 <i<n, Xj <! Bj[A1:=X1, ..., Aq =
Xn] (84.10), or a compile time error occurs.

DiscussioN

Example: Parameterized types.
Vector<String>
Seqg<Seq<A>>
Seq<String>.Zipper<Integer>
Collection<Integer>
Pair<String,String>

// Vector<int> -- illegal, primitive types cannot be arguments
// Pair<String> -- illegal, not enough arguments
// Pair<String,String,String> -- illegal, too many arguments

4.5

51

451 Type Arguments and Wil dcards TYPES, VALUES AND VARIABLES

Two parameterized types are provably distinct if either of the following conditions
hold:

» They are invocations of distinct generic type declarations.

» Any of their type arguments are provably distinct.

451 TypeArgumentsand Wildcards

Type arguments may be either reference types or wildcards.

TypeArguments:
< Actual TypeArgumentList >

Actual TypeArgumentList:
Actual TypeArgument
Actual TypeArgumentList , Actual TypeArgument

Actual TypeArgument:
ReferenceType
WIdcard

Wldcard:
? WildcardBoundsopt

Wi ldcardBounds:
extends ReferenceType
super ReferenceType

DiscussioN

Examples
void printCollection(Collection<?> ¢) { // a wildcard collection
for (Object o :) {
System.out.printin(o);

}
}

52

TYPES, VALUES AND VARIABLES Type Arguments and Wl dcards

Note that using CoTlection<Object> as the type of the incoming parameter, c, would not
be nearly as useful; the method could only be used with an actual parameter that had type
Collection<Object>, which would be quite rare. In contrast, the use of an unbounded
wildcard allows any kind of collection to be used as a parameter.

Wildcards are useful in situations where only partial knowledge about the
type parameter is required.

DiscussioN

Example - Wildcard parameterized types as component types of array types.

pubTic Method getMethod(Class<?>[] parameterTypes) { ... }

Wildcards may be given explicit bounds, just like regular type variable decla-
rations. An upper bound is signified by the syntax:

? extends B

, Where B is the bound.

DiscussioN

Example: Bounded wildcards.

boolean addA11(Collection<? extends E> c)
Here, the method is declared within the interface Collection<E>, and is designed to add
all the elements of its incoming argument to the collection upon which it is invoked. A natu-
ral tendency would be to use ColTlection<E> as the type of c, but this is unnecessarily
restrictive. An alternative would be to declare the method itself to be generic:

<T> boolean addA11(Collection<T> c)
This version is sufficiently flexible, but note that the type parameter is used only once in the
signature. This reflects the fact that the type parameter is not being used to express any
kind of interdependency between the type(s) of the argument(s), the return type and/or

451

53

451

Type Arguments and Wi dcards TYPES, VALUES, AND VARIABLES

throws type. In the absence of such interdependency, generic methods are considered bad
style, and wildcards are preferred.

Unlike ordinary type variables declared in a method signature, no type infer-
ence is required when using awildcard. Consequently, it is permissible to declare
lower bounds on awildcard, using the syntax:

? super B

, Where B isalower bound.

DiscussioN

Example: Lower bounds on wildcards.

Reference(T referent, ReferenceQueue<? super T> queue);
Here, the referent can be inserted into any queue whose element type is a super type of
the type T of the referent.

Two type arguments are provably distinct if neither of the argumentsis atype
variable or wildcard, and the two arguments are not the same type.

DiscussioN

The relationship of wildcards to established type theory is an interesting one, which we
briefly allude to here.

Wildcards are a restricted form of existential types. Given a generic type declaration
G<T extends B>, G<?>isroughly analogous to Some X <: B. G<X>.

Readers interested in a more comprehensive discussion should refer to On Variance-
Based Subtyping for Parametric Types by Atsushi Igarashi and Mirko Viroli, in the proceed-
ings of the 16th European Conference on Object Oriented Programming (ECOOP 2002).

Wildcards differ in certain details from the constructs described in the aforementioned
paper, in particular in the use of capture conversion (85.1.10) ratther than the close opera-
tion described by Igarashi and Viroli. For a formal account of wildcards, see Wild FJ by
Mads Torgersen, Erik Ernst and Christian Plesner Hansen, in the 12th workshop on Foun-
dations of Object Oriented Programming (FOOL 2005).

TYPES, VALUES AND VARIABLES Members and Constructors of Parameterized Types

DiscussioN

Historically, wildcards are a direct descendant of the work by Atsushi Igarashi and Mirko
Viroli. This work itself builds upon earlier work by Kresten Thorup and Mads Torgersen
("Unifying Genericity", ECOOP 99), as well as a long tradition of work on declaration based
variance that goes back to Pierre America’s work on POOL (OOPSLA 89)

45.1.1 Type Argument Containment and Equivalence

A type argument TA; is said to contain another type argument TA,, written
TA> <= TAq, if the set of types denoted by TA is provably a subset of the set of
types denoted by TA; under the following rules (where <: denotes subtyping
(84.10)):

* ? extends T<=7? extends SifT<:S
e ? super T<=7? super SifsS<:T

e T<=T

e T<=7 extends T

e T<=7? super T

452 Membersand Constructors of Parameterized Types

Let C be aclass or interface declaration with formal type parameters A4,...,An,
and let C<Tq,...,Tp> be an invocation of C, where, for 1<i<n, Tj are types
(rather than wildcards). Then:

» Letm beamember or constructor declaration in c, whose type asdeclared isT.
Then the type of m (88.2, 88.8.6) inthetype C<Tq,...,Th>, IST[A1 :=Tq, ...,
An =Tyl

» Let m beamember or constructor declaration in D, where D is a class extended
by C or aninterface implemented by C. Let D<Uq, - . . ,Ux> be the supertype of
C<Tq,-.-,Tn> that corresponds to D. Then thetype of minC<Tq,...,Tp>is
thetypeof minD<Uq,...,Uk>.

If any of the type arguments to a parameterized type are wildcards, the type of
its members and constructors is undefined.

452

55

4.6

56

Type Erasure TYPES, VALUES, AND VARIABLES

DiscussioN

This is of no consequence, as it is impossible to access a member of a parameterized type
without performing capture conversion (85.1.10), and it is impossible to use a wildcard type
after the keyword new in a class instance creation expression

4.6 TypeErasure

Type erasure is amapping from types (possibly including parameterized types and
type variables) to types (that are never parameterized types or type variables). We
write | T| for the erasure of type T. The erasure mapping is defined as follows.

» The erasure of a parameterized type (84.5) G<T1, ... ,Tp>isS]G|.

» Theerasure of anested typeT.Cis|T|.C.

» Theerasure of an array type T[] is|TI[]-

» The erasure of atype variable (84.4) isthe erasure of its leftmost bound.

» The erasure of every other typeisthe type itself.

The erasure of a method signature s is a signature consisting of the same
name ass, and the erasures of all the formal parameter types givenin s.

4.7 Reifiable Types

Because some type information is erased during compilation, not al types are
available at run time. Types that are completely available at run time are known as
reifiable types. A typeisreifiable if and only if one of the following holds:

* It refersto anon-generic type declaration.

* It is a parameterized type in which al type arguments are unbounded wild-
cards (84.5.1).

* Itisaraw type (84.8).
* Itisaprimitive type (84.2).
* Itisan array type (810.1) whose component type is reifiable.

TYPES, VALUES AND VARIABLES Raw Types

DiscussioN

The decision not to make all generic types reifiable is one of the most crucial, and contro-
versial design decisions involving the language’s type system.

Ultimately, the most important motivation for this decision is compatibility with existing
code.

Naively, the addition of new constructs such as genericity has no implications for pre-
existing code. The programming language per se, is compatible with earlier versions as
long as every program written in the previous versions retains its meaning in the new ver-
sion. However, this notion, which may be termed language compatibility, is of purely theo-
retical interest. Real programs (even trivial ones, such as "Hello World") are composed of
several compilation units, some of which are provided by the Java platform (such as ele-
ments of java.lang or java.util).

In practice then, the minimum requirement is platform compatibillity - that any program
written for the prior version of the platform continues to function unchanged in the new plat-
form.

One way to provide platform compatibillity is to leave existing platform functionality
unchanged, only adding new functionality. For example, rather than modify the existing Col-
lections hierarchy in java.util, one might introduce a new library utilizing genericity.

The disadvantages of such a scheme is that it is extremely difficult for pre-existing cli-
ents of the Collection library to migrate to the new library. Collections are used to exchange
data between independently developed modules; if a vendor decides to switch to the new,
generic, library, that vendor must also distribute two versions of their code, to be compatible
with their clients. Libraries that are dependent on other vendors code cannot be modified to
use genericity until the supplier’s library is updated. If two modules are mutually dependent,
the changes must be made simultaneously.

Clearly, platform compatibility, as outlined above, does not provide a realistic path for
adoption of a pervasive new feature such as genericity. Therefore, the design of the generic
type system seeks to support migration compatibility. Migration compatibiliy allows the evo-
lution of existing code to take advantage of generics without imposing dependencies
between independently developed software modules.

The price of migration compatibility is that a full and sound reification of the generic
type system is not possible, at least while the migration is taking place.

4.8 Raw Types

To facilitate interfacing with non-generic legacy code, it is aso possible to use as
a type the erasure (84.6) of a parameterized type (84.5). Such atypeiscalled a
raw type.

4.8

57

4.8

58

Raw Types TYPES VALUES AND VARIABLES

More precisely, araw typeis define to be either:

» The name of a generic type declaration used without any accompanying
actual type parameters.

» Any non-static type member of araw typeR that is not inherited from a super-
class or superinterface of R.

DiscussioN

The latter point may not be immediately self evident. Presenting for your consideration,
then, the following example:
class Outer<T>{
T t;
class Inner {
T setOuterT(T tl1) {t = tl;return t;}
}

}

The type of the member(s) of Inner depends on the type parameter of Outer. If Quter is
raw, Inner must be treated as raw as well, as their is no valid binding for T.

This rule applies only to type members that are not inherited. Inherited type members
that depend on type variables will be inherited as raw types as a consequence of the rule
that the supertypes of a raw type are erased, described later in this section.

DiscussioN

Another implication of the rules above is that a generic inner class of a raw type can itself
only be used as a raw type:
class Outer<T>{

class Inner<S> {
S s;
}

}

it is not possible to access Inner as partially raw type (a "rare" type)
Outer.Inner<Double> x = null; // illegal
Double d = x.s;

because Outer itself is raw, so are all its inner classes, including Inner, and so it is
not possible to pass any type parameters to it.

TYPES, VALUES AND VARIABLES Raw Types

The use of raw types is allowed only as a concession to compatibility of leg-
acy code. The use of raw typesin code written after the introduction of genericity
into the Java programming language is strongly discouraged. It is possible that
future versions of the Java programming language will disallow the use of raw
types.

It is a compile-time error to attempt to use atype member of a parameterized
type asaraw type.

DiscussioN

This means that the ban on "rare" types extends to the case where the qualifying type is
parameterized, but we attempt to use the inner class as a raw type:
Outer<Integer>.Inner x = null; // illegal
This is the opposite of the case we discussed above. There is no practical justification
for this half baked type. In legacy code, no type parameters are used. In non-legacy code,
we should use the generic types correctly and pass all the required actual type parameters.

DiscussioN

Variables of a raw type can be assigned from values of any of the type’'s parametric
instances.

For instance, it is possible to assign a Vector<String> to a Vector, based on the
subtyping rules (84.10.2).
The reverse assignment from Vector to Vector<String> is unsafe (since the raw vector
might have had a different element type), but is still permitted using unchecked conversion
(85.1.9) in order to enable interfacing with legacy code. In this case, a compiler will issue an
unchecked warning.

The superclasses (respectively, superinterfaces) of a raw type are the erasures of
the superclasses (superinterfaces) of any of its parameterized invocations.

The type of a constructor (88.8), instance method (88.8, §9.4), or non-static
field (88.3) M of araw type C that is not inherited from its superclasses or super-
interfaces is the erasure of its type in the generic declaration corresponding to C.
The type of a static member of a raw type C is the same as its type in the generic
declaration corresponding to C.

It is a compile-time error to pass actual type parameters to a non-static type
member of araw type that is not inherited from its superclasses or superinterfaces.

4.8

59

4.8

60

Raw Types TYPES VALUES AND VARIABLES

To make sure that potential violations of the typing rules are aways flagged,
some accesses to members of a raw type will result in warning messages. The
rules for generating warnings when accessing members or constructors of raw
types are as follows:

* An invocation of a method or constructor of a raw type generates an
unchecked warning if erasure changes any of the types of any of the argu-
ments to the method or constructor.

* An assignment to a field of a raw type generates an unchecked warning
(85.1.9) if erasure changes the field's type.

No unchecked warning is required for a method call when the argument types do
not change (even if the result type and/or throws clause changes), for reading
from afield, or for a classinstance creation of araw type.

The supertype of aclass may be araw type. Member accessesfor the class are
treated as normal, and member accesses for the supertype are treated as for raw
types. In the constructor of the class, calls to super are treated as method calls on
araw type.

DiscussioN

Example: Raw types.
class Cell<E>
E value;
Cell (E v) { value=v; }
A get() { return value; }
void set(E v) { value=v; }

3
Cell x = new Cell<String>("abc");

x.value; // OK, has type Object
x.get(Q; // OK, has type Object
x.set("def"); // unchecked warning

TYPES, VALUES AND VARIABLES Raw Types

DiscussioN

For example,
import java.util.¥*;

class NonGeneric {

ColTlection<Number> myNumbers(){return null;}

}

abstract class RawMembers<T> extends NonGeneric implements Collec-
tion<String> {
static Collection<NonGeneric> cng =
new ArraylList<NonGeneric>(Q);

public static void main(String[] args) {
RawMembers rw = null;
Collection<Number> cn = rw.myNumbers(); // ok
Iterator<String> is = rw.iterator(); // unchecked warning
Collection<NonGeneric> cnn = rw.cng; // ok - static member
}
}

RawMembers<T> inherits the method

Iterator<String> iterator()

from the CoTTection<String> superinterface. However, the type RawMembers inher-
its iterator() from the erasure of its superinterface, which means that the return type of
the member iterator() is the erasure of Iterator<<String>, Iterator. As a result,
the attempt to assign to rw.iterator() requires an unchecked conversion (85.1.9) from
Iteratorto Iterator<String>, causing an unchecked warning to be issued.

In contrast, the static member cng retains its full parameterized type even when
accessed through a object of raw type (note that access to a static member through an
instance is considered bad style and is to be discouraged). The member myNumbers is
inherited from the NonGeneric (whose erasure is also NonGeneric) and so retains its full
parameterized type.

DiscussioN

Raw types are closly related to wildcards. Both are based on existential types. Raw types
can be thought of as wildcards whose type rules are deliberately unsound, to accommo-
date interaction with legacy code.

Historically, raw types preceded wildcards; they were first introduced in GJ, and
described in the paper Making the future safe for the past: Adding Genericity to the Java
Programming Language by Gilad Bracha, Martin Odersky, David Stoutamire, and Philip

4.8

61

4.9

62

Intersection Types TYPES, VALUES, AND VARIABLES

Wadler, inp Proc. of the ACM Conf. on Object-Oriented Programming, Systems, Languages
and Applications, (OOPSLA 98) October 1998.

4.9 Intersection Types

An intersection type takestheform T, & ... & T, n>0,where T, 1<i<n,
are type expressions. Intersection types arise in the processes of capture conver-
sion (85.1.10) and type inference (815.12.2.7). It is not possible to write an inter-
section type directly as part of a program; no syntax supports this. The values of
an intersection type are those objects that are values of al of the types T3, for
1<i<n.

The members of an intersectiontypeTy & ... & T, are determined asfol-
lows:

» For each Tj, 1<i<n, let Cj be the most specific class or array type such
thatTj <: Cj Thenthere must be some Ti <: Ck suchthat Cx <: Cj for any
i, 1<i<n,Or acompile-time error occurs.

e For 1<j<n, iij isatype variable, then let ITj be an interface whose mem-
bers are the same as the public members of Tj; otherwisg, if Tj isan interface,
thenlet 1Tj be Tj.

» Then the intersection type has the same members as a class type (88) with an
empty body, direct superclass Cx and direct superinterfaces 171 , ..., 1Tp,
declared in the same package in which the intersection type appears.

DiscussioN

It is worth dwelling upon the distinction between intersection types and the bounds of type
variables. Every type variable bound induces an intersection type. This intersection type is
often trivial (i.e., consists of a single type).

The form of a bound is restricted (only the first element may be a class or type vari-
able, and only one type variable may appear in the bound) to preclude certain awkward sit-
uations coming into existence. However, capture conversion can lead to the creation of type
variables whose bounds are more general (e.g., array types).

TYPES VALUES AND VARIABLES Subtyping among Class and Interface Types 4.10.2

4.10 Subtyping

The subtype and supertype relations are binary relations on types. The supertypes
of atype are obtained by reflexive and transitive closure over the direct supertype
relation, written S >q T, which is defined by rules given later in this section. We
writeS -> T toindicate that the supertype relation holds betweensand 7. Sisa
proper supertypeof T, written s>7,ifS > Tand s=T.

The subtypes of atype T are al types U such that T is a supertype of U, and the
null type. Wewrite T <: S toindicate that that the subtype relation holds between
typesTand S. Tisaproper subtypeof S, written 7<s,if T <:Sand s=7.Tisa
direct subtypeof S, written T <1 S, ifS >0 T .

Subtyping does not extend through generic types: T <: U does not imply that C<T>
<: C<U>.

4.10.1 Subtyping among Primitive Types

Thefollowing rules define the direct supertype relation among the primitive types:

double >4 float
float >, long
long > int

int >, char

int >4 short
short >1 byte

4.10.2 Subtyping among Class and I nterface Types

Let C be atype declaration (84.12.6, 88.1, 89.1) with zero or more type parameters
(84.4) Fq, ..., Fn which have corresponding bounds By, ..., Bn. That type declara-
tion defines a set of parameterized types (84.5) Ci<T1, - - -, Tnh>, where each argu-
ment type T; ranges over all types that are subtypes of al types listed in the
corresponding bound. That is, for each bound type S; in Bj, Tj isasubtype of S
F1:=Tq1, .., Fn = Tp].

Given atype declaration for C<Fq, ..., Fn>, the direct supertypes of the parame-
terized type (84.5) C<Fq1, - - -, Fn> are al of the following:

* thedirect superclasses of C.

* the direct superinterfaces of C.

63

4.10.3 Subtyping among Array Types TYPES VALUES AND VARIABLES

» ThetypeObject, if C isan interface type with no direct superinterfaces.

» Theraw typec.

The direct supertypes of the type c<Tq, ..., Tn> , Where Tj, 1<i<n, isa
type, areD<U4 theta, ..., Uk theta>, where
e D<Uq,.-., Uk> isadirect supertype of C<Fq, - - ., Fn>, and theta is the substi-
tution [F1 :=Tq, ..., Fn := Thl.
* C<S1,---, Snp> where s contains (84.5.1.1) T; for 1 <i<n .
The direct supertypes of the type C<Rq, .- ., Rn> , where at least one of the Rj,
1<i<n,isawildcard type argument, are the direct supertypes of C<Xq, ..., Xn>,
where
C<X1,-.-,Xn> is the result of applying capture conversion (85.1.10) to
C<R1,---, Rn>
The direct supertypes of an intersection type (84.9) T4 & ... & Tp, aeTj,
1<i<n.

The direct supertypes of atype variable (84.4) are the types listed in its bound.
The direct supertypes of the null type are all reference types other than the
null type itself.
In addition to the above rules, atype variable is adirect supertype of itslower
bound.

4.10.3 Subtyping among Array Types

The following rules define the direct subtype relation among array types:
» If Sand T are both reference types, then s[1 >1 T[1iffS >1 T.
* Object >1 Object[]
* Cloneable >1 Object[]
* java.io.Serializable >1 Object[]
 If p isaprimitive type, then:
o Object >1 p[]
o Cloneable >1 p[]

o java.io.Serializable >1 p[d

TYPES, VALUES AND VARIABLES Where Types Are Used

4.11 WhereTypesAre Used

Types are used when they appear in declarations or in certain expressions.
The following code fragment contains one or more instances of most kinds of

usage of atype:
import java.util.Random;
class MiscMath<T extends Number>{
int divisor;
MiscMath(int divisor) {
this.divisor = divisor;

}
float ratio(long 1) {
try {
1 /= divisor;
} catch (Exception e) {
if (e instanceof ArithmeticException)
1 = Long.MAX_VALUE;
else
1 =0;
3
return (float)1;
}

double gausser() {

Random r = new Random();
double[] val = new double[2];
val[0] = r.nextGaussian(Q);
val[l] = r.nextGaussian(Q);
return (val[0] + val[1l]) / 2;

Collection<Number> fromArray(Number[] na) {
Collection<Number> cn = new ArrayList<Number>();
for (Number n : na) {

cn.add(n)
}
return cn;

3
void <S> Toop(S s){ this.<S>Toop(s);}

}
In this example, types are used in declarations of the following:

411

65

411 Where Types Are Used TYPES, VALUES, AND VARIABLES

» Imported types (87.5); here the type Random, imported from the type
java.util.Random of the package java.uti1, isdeclared

* Fields, which are the class variables and instance variables of classes (88.3),
and constants of interfaces (89.3); here the field divisor in the class
MiscMath isdeclared to be of type int

* Method parameters (88.4.1); here the parameter 1 of the method ratio is
declared to be of type Tong

» Method results (88.4); here the result of the method ratio is declared to be of
type float, and the result of the method gausser is declared to be of type
double

* Constructor parameters (88.8.1); here the parameter of the constructor for
MiscMath isdeclared to be of type int

* Local variables (§14.4, §14.14); the local variables r and val of the method
gausser are declared to be of typesRandom and doubl1e[] (array of double)

* Exception handler parameters (814.20); here the exception handler parameter
e of the catch clauseis declared to be of type Exception

* Type variables (84.4); here the type variable T has Number as its declared
bound.

and in expressions of the following kinds:

» Class instance creations (815.9); here alocal variable r of method gausser is
initialized by a class instance creation expression that uses the type Random

*» Generic class (88.1.2) instance creations (815.9); here Number is used as a
type argument in the expression new ArrayList<Number>()

* Array creations (815.10); here the local variable val of method gausser is
initialized by an array creation expression that creates an array of double
with size 2

* Generic method (88.4.4) or constructor (88.8.4) invocations (§815.12); here the
method Toop callsitself with an explicit type argument S

* Casts (815.16); here the return statement of the method ratio uses the
float typeinacast

* The instanceof operator (815.20.2); here the instanceof operator tests
whether e is assignment compatible with the type ArithmeticException

. Types are also used as arguments to parameterized types; here the type Number
is used as an argument in the parameterized type Collection<Numbers>.

66

TYPES, VALUES AND VARIABLES Variables of Reference Type 4.12.2

4.12 Variables

A variable is a storage location and has an associated type, sometimes called its
compile-time type, that is either a primitive type (84.2) or areference type (84.3).
A variable’'s value is changed by an assignment (815.26) or by a prefix or postfix
++ (increment) or -- (decrement) operator (815.14.2, 8§15.14.3, §15.15.1,
§15.15.2).

Compatibility of the value of a variable with its type is guaranteed by the
design of the Java programming language, as long as a program does not give rise
to unchecked warnings (84.12.2.1). Default values are compatible (84.12.5) and
all assignmentsto avariable are checked for assignment compatibility (85.2), usu-
aly at compile time, but, in a single case involving arrays, a run-time check is
made (810.10).

4.12.1 Variablesof Primitive Type

A variable of a primitive type always holds a value of that exact primitive type.

4.12.2 Variablesof Reference Type

A variable of aclasstype T can hold anull reference or areference to an instance
of class T or of any classthat isa subclass of T. A variable of an interface type can
hold a null reference or a reference to any instance of any class that implements
the interface.

DiscussioN

Note that a variable is not guaranteed to always refer to a subtype of its declared type, but
only to subclasses or subinterfaces of the declared type. This is due to the possibility of
heap pollution discussed below.

If T isaprimitive type, then avariable of type “array of T” can hold anull ref-
erence or a reference to any array of type “array of T”; if T is a reference type,
then avariable of type “array of T” can hold anull reference or areference to any
array of type “array of S” such that type s is a subclass or subinterface of type T.
In addition, a variable of type Object[] can hold an array of any reference type.

67

4.12.2 Variables of Reference Type TYPES, VALUES, AND VARIABLES

68

A variable of type Object can hold a null reference or a reference to any object,
whether classinstance or array.

4.12.2.1 Heap Pollution

It is possible that a variable of a parameterized type refers to an object that is not
of that parameterized type. This situation is known as heap pollution. This situa-
tion can only occur if the program performed some operation that would give rise
to an unchecked warning at compile-time.

DiscussioN

For example, the code:
List 1 = new ArrayList<Number>(Q);
List<String> 1s = 1; // unchecked warning

gives rise to an unchecked warning, because it is not possible to ascertain, either at com-
pile-time (within the limits of the compile-time type checking rules) or at run-time, whether
the variable | does indeed refer to a List<String>.

If the code above is executed, heap pollution arises, as the variable Is, declared to be a
List<String>, refersto avalue thatis notinfacta List<String>.

The problem cannot be identified at run-time because type variables are not reified,
and thus instances do not carry any information at run-time regarding the actual type
parameters used to create them.

In a simple example as given above, it may appear that it should be straightforward to
identify the situation at compile-time and give a compilation error. However, in the general
(and typical) case, the value of the variable | may be the result of an invocation of a sepa-
rately compiled method, or its value may depend upon arbitrary control flow.

The code above is therefore very atypical, and indeed very bad style.

Assignment from a value of a raw type to a variable of a parameterized type should
only be used when combining legacy code which does not make use of parameterized
types with more modern code that does.

If no operation that requires an unchecked warning to be issued takes place, heap pol-
lution cannot occur. Note that this does not imply that heap pollution only occurs if an
unchecked warning actually occurred. It is possible to run a program where some of the
binaries were compiled by a compiler for an older version of the Java programming lan-
guage, or by a compiler that allows the unchecked warnings to suppressed. This practice is
unhealthy at best.

Conversely, it is possible that despite executing code that could (and perhaps did) give
rise to an unchecked warning, no heap pollution takes place. Indeed, good programming
practice requires that the programmer satisfy herself that despite any unchecked warning,
the code is correct and heap pollution will not occur.

TYPES, VALUES AND VARIABLES Kinds of Variables 4.12.3

The variable will always refer to an object that is an instance of a class that
implements the parameterized type.

DiscussioN

For instance, the value of 1 in the example above is always a List.

4.12.3 Kindsof Variables

There are seven kinds of variables:

1. A class variable is a field declared using the keyword static within a class
declaration (88.3.1.1), or with or without the keyword static within an inter-
face declaration (89.3). A classvariableis created when itsclass or interfaceis
prepared (812.3.2) and isinitialized to adefault value (84.12.5). The classvari-
able effectively ceases to exist when its class or interface is unloaded (812.7).

2. An instance variable is a field declared within a class declaration without
using the keyword static (88.3.1.1). If aclass T has a field a that is an
instance variable, then a new instance variable a is created and initialized to a
default value (84.12.5) as part of each newly created object of class T or of
any class that is a subclass of T (88.1.4). The instance variable effectively
ceases to exist when the object of which it is afield is no longer referenced,
after any necessary finalization of the object (812.6) has been compl eted.

3. Array components are unnamed variables that are created and initialized to
default values (84.12.5) whenever a new object that is an array is created
(815.10). The array components effectively cease to exist when the array isno
longer referenced. See 8§10 for a description of arrays.

4. Method parameters (88.4.1) name argument values passed to a method. For
every parameter declared in a method declaration, a new parameter variableis
created each time that method isinvoked (815.12). The new variableisinitial-
ized with the corresponding argument value from the method invocation. The
method parameter effectively ceases to exist when the execution of the body
of the method is complete.

5. Constructor parameters (88.8.1) name argument values passed to a construc-
tor. For every parameter declared in a constructor declaration, a new parame-
ter variable is created each time a class instance creation expression (815.9) or

69

4.12.3 Kindsof Variables TYPES, VALUES, AND VARIABLES

70

explicit constructor invocation (88.8.7) invokes that constructor. The new
variableisinitialized with the corresponding argument value from the creation
expression or constructor invocation. The constructor parameter effectively
ceases to exist when the execution of the body of the constructor is complete.

. An exception-handler parameter is created each time an exception is caught

by a catch clause of a try statement (814.20). The new variable isinitialized
with the actual object associated with the exception (811.3, 814.18). The
exception-handler parameter effectively ceases to exist when execution of the
block associated with the catch clause is complete.

. Local variables are declared by local variable declaration statements (814.4).

Whenever the flow of control enters a block (814.2) or for statement
(814.14), anew variable is created for each local variable declared in a local
variable declaration statement immediately contained within that block or for
statement. A local variable declaration statement may contain an expression
which initializes the variable. The local variable with an initializing expres-
sion is not initialized, however, until the local variable declaration statement
that declaresit is executed. (The rules of definite assignment (816) prevent the
value of alocal variable from being used before it has been initialized or oth-
erwise assigned a value.) The local variable effectively ceases to exist when
the execution of the block or for statement is complete.

Were it not for one exceptional situation, a local variable could aways be
regarded as being created when its local variable declaration statement is exe-
cuted. The exceptional situation involves the switch statement (§14.11),
whereit is possible for control to enter a block but bypass execution of alocal
variable declaration statement. Because of the restrictions imposed by the
rules of definite assignment (8§16), however, the local variable declared by
such a bypassed local variable declaration statement cannot be used before it
has been definitely assigned a value by an assignment expression (815.26).

The following example contains several different kinds of variables:
class Point {
static int numPoints; // numPoints isaclassvariable

int x, y; // x andy areinstance variables
int[] w = new int[10]; // w[0] isan array component
int setX(int x) { // x isamethod parameter

int oldx = this.x; // oldxisalocal variable
this.x = x;
return oldx;
}
}

TYPES, VALUES AND VARIABLES Initial Values of Variables 4.12.5

4124 final Variables

A variable can be declared final. A final variable may only be assigned to once.
It is a compile time error if afinal variable is assigned to unless it is definitely
unassigned (816) immediately prior to the assignment.

A blank final isafinal variable whose declaration lacks an initializer.

Once a final variable has been assigned, it always contains the same value.
If afinal variable holds areference to an object, then the state of the object may
be changed by operations on the object, but the variable will always refer to the
same object. This applies also to arrays, because arrays are objects; if a final
variable holds a reference to an array, then the components of the array may be
changed by operations on the array, but the variable will always refer to the same
array.

Declaring a variable final can serve as useful documentation that its value
will not change and can help avoid programming errors.

In the example:

class Point {

int x, y;

int useCount;

Point(int x, int y) { this.x = x; this.y = vy; }
final static Point origin = new Point(0, 0);

3
the class Point declares afina class variable origin. The origin variable holds
a reference to an object that is an instance of class Point whose coordinates are
(0, 0). The value of the variable Point.origin can never change, so it always
refers to the same Point object, the one created by its initializer. However, an
operation on this Point object might change its state—for example, modifying its
useCount or even, misleadingly, its x or y coordinate.

We call avariable, of primitive type or type String, that is final and initial-
ized with a compile-time constant expression (815.28) a constant variable.
Whether a variable is a constant variable or not may have implications with
respect to class initialization (812.4.1), binary compatibility (813.1, §13.4.9) and
definite assignment (816).

4125 Initial Values of Variables

Every variable in a program must have a value before its value is used:

» Each class variable, instance variable, or array component isinitialized with a
default value when it is created (815.9, §15.10):

o For type byte, the default value is zero, that is, the value of (byte)O.

71

4.12.5 |Initial Values of Variables TYPES, VALUES, AND VARIABLES

o For type short, the default valueis zero, that is, the value of (short)O0.
o For typeint, the default valueis zero, that is, 0.

o For type 1ong, the default value is zero, that is, OL.

o For type f1oat, the default value is positive zero, that is, 0. 0f.

o For type double, the default value is positive zero, that is, 0. 0d.

o For type char, the default value is the null character, that is, ' \u0000"'.
o For type boolean, the default valueis false.

o For al reference types (84.3), the default valueisnull.

» Each method parameter (88.4.1) is initialized to the corresponding argument
value provided by the invoker of the method (815.12).

» Each constructor parameter (88.8.1) is initialized to the corresponding argu-
ment value provided by a class instance creation expression (815.9) or explicit
constructor invocation (88.8.7).

» An exception-handler parameter (814.20) is initialized to the thrown object
representing the exception (811.3, §14.18).

* A local variable (814.4, 814.14) must be explicitly given a value before it is
used, by either initialization (814.4) or assignment (815.26), in away that can
be verified by the compiler using the rules for definite assignment (816).

The exampl e program:
class Point {
static int npoints;
int x, y;
Point root;

}

class Test {

public static void main(String[] args) {
System.out.printin("npoints=" + Point.npoints);
Point p = new Point(Q);
System.out.printin("p.x=" + p.x + ", p.y='
System.out.printin("p.root=" + p.root);

+p.y);

}
}
prints:
npoints=0
p.x=0, p.y=0
p.root=null

72

TYPES, VALUES, AND VARIABLES Types, Classes, and Interfaces 4.12.6

illustrating the default initialization of npoints, which occurs when the class
Point isprepared (812.3.2), and the default initialization of x, y, and root, which
occurs when a new Point is instantiated. See 812 for a full description of all
aspects of loading, linking, and initialization of classes and interfaces, plus a
description of the instantiation of classes to make new class instances.

4.12.6 Types, Classes, and Interfaces

In the Java programming language, every variable and every expression has atype
that can be determined at compile time. The type may be a primitive type or aref-
erence type. Reference types include class types and interface types. Reference
types are introduced by type declarations, which include class declarations (88.1)
and interface declarations (89.1). We often use the term type to refer to either a
class or an interface.

Every object belongs to some particular class: the class that was mentioned in
the creation expression that produced the object, the class whose Class object
was used to invoke a reflective method to produce the object, or the String class
for objects implicitly created by the string concatenation operator + (815.18.1).
This classis called the class of the object. (Arrays also have a class, as described
at the end of this section.) An object is said to be an instance of its class and of al
superclasses of its class.

Sometimes a variable or expression is said to have a “run-time type”’. This
refers to the class of the object referred to by the value of the variable or expres-
sion at run time, assuming that the valueis not nu11.

The compile time type of avariable is always declared, and the compile time
type of an expression can be deduced at compile time. The compile time type lim-
its the possible values that the variable can hold or the expression can produce at
runtime. If arun-time valueisareferencethat isnot nul1, it refers to an object or
array that has a class, and that class will necessarily be compatible with the com-
pile-time type.

Even though a variable or expression may have a compile-time type that is an
interface type, there are no instances of interfaces. A variable or expression whose
typeis an interface type can reference any object whose class implements (88.1.5)
that interface.

Here is an example of creating new objects and of the distinction between the
type of avariable and the class of an object:

public interface Colorable {

void setColor(byte r, byte g, byte b);

}

class Point { int x, y; }

class ColoredPoint extends Point implements Colorable {

73

4.12.6 Types, Classes, and Interfaces TYPES, VALUES, AND VARIABLES

74

byte r, g, b;

public void setColor(byte rv, byte gv, byte bv) {
r=rv; g=gv; b = bv;

}
}

class Test {

public static void main(String[] args) {
Point p = new Point(Q);
ColoredPoint cp = new ColoredPoint();
p = Cp;
Colorable c = cp;

}

In this example:

» The local variable p of the method main of class Test hastype Point and is
initially assigned a reference to a new instance of class Point.

* The local variable cp similarly has as its type ColoredPoint, and isinitially
assigned areference to a new instance of class ColoredPoint.

* The assignment of the value of cp to the variable p causes p to hold a refer-
encetoaColoredPoint object. Thisis permitted because ColoredPoint isa
subclass of Point, so the class ColoredPoint is assignment compatible
(85.2) with the type Point. A ColoredPoint object includes support for al
the methods of a Point. In addition to its particular fields r, g, and b, it has
the fields of class Point, namely x and y.

* The local variable c has as its type the interface type Colorable, so it can
hold a reference to any object whose class implements Colorable; specifi-
cally, it can hold areferenceto aColoredPoint.

DiscussioN

Note that an expression such as new Colorable() is not valid because it is not possible to
create an instance of an interface, only of a class.

Every array also has a class; the method getClass, when invoked for an array
object, will return a class object (of class Class) that represents the class of the

aray.

TYPES, VALUES, AND VARIABLES Types, Classes, and Interfaces 4.12.6

The classes for arrays have strange names that are not valid identifiers; for
example, the class for an array of int components has the name “[I” and so the
value of the expression:

new int[10].getClass().getName()
isthestring " [I"; see the specification of Class.getName for details.

75

4.12.6 Types, Classes, and Interfaces TYPES, VALUES, AND VARIABLES

76

CHAPTER 5

Conversions and Promotions

EVERY expression written in the Java programming language has a type that
can be deduced from the structure of the expression and the types of the literals,
variables, and methods mentioned in the expression. It is possible, however, to
write an expression in a context where the type of the expression is not appropri-
ate. In some cases, this leads to an error at compile time. In other cases, the con-
text may be able to accept atype that is related to the type of the expression; as a
convenience, rather than requiring the programmer to indicate a type conversion
explicitly, the language performs an implicit conversion from the type of the
expression to atype acceptable for its surrounding context.

A specific conversion from type s to type T alows an expression of type s to
be treated at compile time as if it had type T instead. In some cases this will
reguire a corresponding action at run time to check the validity of the conversion
or to trangdlate the run-time value of the expression into a form appropriate for the
new type T. For example:

* A conversion from type Object to type Thread requires a run-time check to
make sure that the run-time value is actually an instance of class Thread or
one of its subclasses; if it is not, an exception is thrown.

* A conversion from type Thread to type Object requires no run-time action;
Thread is a subclass of Object, so any reference produced by an expression
of type Thread isavalid reference value of type Object.

* A conversion from type int to type Tong requires run-time sign-extension of
a 32-bit integer value to the 64-bit Tong representation. No information is
lost.

77

78

Conversions and Promations CONVERS ONS AND PROMOTIONS

A conversion from type double to type Tong requires a nontrivial translation
from a 64-bit floating-point value to the 64-bit integer representation. Depending
on the actual run-time value, information may be lost.

In every conversion context, only certain specific conversions are permitted.
For convenience of description, the specific conversions that are possible in the
Java programming language are grouped into several broad categories:

* |dentity conversions

» Widening primitive conversions
» Narrowing primitive conversions
» Widening reference conversions
» Narrowing reference conversions
» Boxing conversions

» Unboxing conversions

» Unchecked conversions
 Capture conversions

 String conversions

» Vaue set conversions

There are five conversion contexts in which conversion of expressions may
occur. Each context allows conversionsin some of the categories named above but
not others. The term “conversion” is aso used to describe the process of choosing
a specific conversion for such a context. For example, we say that an expression
that is an actual argument in amethod invocation is subject to “method invocation
conversion,” meaning that a specific conversion will be implicitly chosen for that
expression according to the rules for the method invocation argument context.

One conversion context is the operand of a numeric operator such as + or *.
The conversion process for such operandsis called numeric promotion. Promotion
is special in that, in the case of binary operators, the conversion chosen for one
operand may depend in part on the type of the other operand expression.

This chapter first describes the eleven categories of conversions (85.1),
including the specia conversions to String alowed for the string concatenation
operator +. Then the five conversion contexts are described:

» Assignment conversion (85.2, 815.26) converts the type of an expression to
the type of a specified variable. Assignment conversion may cause a Out-
OfMemoryError (as aresult of boxing conversion (85.1.7)), aNul1Pointer-

CONVERS ONS AND PROMOTIONS Conversions and Promotions

Exception (as a result of wunboxing conversion (85.1.8)), or a
ClassCastException (asaresult of an unchecked conversion (85.1.9)) to be
thrown at run time.

Method invocation conversion (85.3, 815.9, 815.12) is applied to each argu-
ment in a method or constructor invocation and, except in one case, performs
the same conversions that assignment conversion does. Method invocation
conversion may cause aOutOfMemoryError (asaresult of boxing conversion
(85.1.7)), a Nul1PointerException (as a result of unboxing conversion
(85.1.8)), or aClassCastException (as aresult of an unchecked conversion
(85.1.9)) to be thrown at run time.

Casting conversion (85.5) converts the type of an expression to a type explic-
itly specified by a cast operator (815.16). It is more inclusive than assignment
or method invocation conversion, allowing any specific conversion other than
a string conversion, but certain casts to a reference type may cause an excep-
tion at run time.

String conversion (85.4, 815.18.1) alows any type to be converted to type
String.

Numeric promotion (85.6) brings the operands of a numeric operator to a
common type so that an operation can be performed.

Here are some examples of the various contexts for conversion:
class Test {
public static void main(String[] args) {
// Casting conversion (85.4) of afloat literal to
// typeint. Without the cast operator, this would
// beacompile-time error, because thisisa
// harrowing conversion (85.1.3):
int i = (int)12.5f;
// String conversion (85.4) of i’sint value:
System.out.println("(int)12.5f==" + 1i);

// Assignment conversion (85.2) of i’svaueto type

// float. Thisisawidening conversion (85.1.2):

float f = 1;

// String conversion of f's float vaue:
System.out.printin("after float widening: " + f);

// Numeric promation (85.6) of i’svaueto type

// float. Thisisabinary numeric promotion.
// After promotion, the operation is float*float:

79

51

80

Kinds of Conversion CONVERS ONS AND PROMOTIONS

System.out.print(f);

f=Ff*1;

// Two string conversions of i and f:
System.out.println(+ 1 + "==" +);

// Method invocation conversion (85.3) of f'svalue

// totypedouble, needed because the method Math.sin
// acceptsonly adouble argument:

double d = Math.sin(f);

// Two string conversions of f and d:
System.out.printin("Math.sin(" + f + ")==" + d);

}

which produces the output:
(int)12.5f==12
after float widening: 12.0

12.0*12==144.0
Math.sin(144.0)==-0.49102159389846934

5.1 Kindsof Conversion

Specific type conversions in the Java programming language are divided into the
following categories.

5.1.1 ldentity Conversions

A conversion from atype to that same type is permitted for any type.

Thismay seem trivial, but it has two practical consequences. Firgt, it is aways
permitted for an expression to have the desired type to begin with, thus allowing
the simply stated rule that every expression is subject to conversion, if only atriv-
ial identity conversion. Second, it implies that it is permitted for a program to
include redundant cast operators for the sake of clarity.

5.1.2 Widening Primitive Conversion

The following 19 specific conversions on primitive types are called the widening
primitive conversions:

CONVERSIONS AND PROMOTIONS Widening Primitive Conversion

* byte to short, int, Tong, float, or double
e short to int, long, float, or double

e char to int, long, float, or double

* int to Tong, float, or double

* Tong to float or double

e float to double

Widening primitive conversions do not lose information about the overall
magnitude of a numeric value. Indeed, conversions widening from an integral type
to another integral type do not lose any information at al; the numeric value is
preserved exactly. Conversions widening from float to double in strictfp
expressions also preserve the numeric value exactly; however, such conversions
that are not strictfp may lose information about the overall magnitude of the
converted value.

Conversion of an int or along valueto float, or of along valueto doubTe,
may result in loss of precision—that is, the result may lose some of the least sig-
nificant bits of the value. In this case, the resulting floating-point value will be a
correctly rounded version of the integer value, using IEEE 754 round-to-nearest
mode (84.2.4).

A widening conversion of a signed integer value to an integral type T simply
sign-extends the two’s-complement representation of the integer value to fill the
wider format. A widening conversion of achar to an integral type T zero-extends
the representation of the char value to fill the wider format.

Despite the fact that loss of precision may occur, widening corversions
among primitive types never result in a run-time exception (811).

Here is an example of awidening conversion that |oses precision:

class Test {

public static void main(String[] args) {
int big = 1234567890;
float approx = big;
System.out.printin(big - (int)approx);
3
b

which prints:

-46
thus indicating that information was lost during the conversion from type int to
type float because values of type float are not precise to nine significant digits.

512

81

513

82

Narrowing Primitive Conversions CONVERS ONS AND PROMOTIONS

5.1.3 Narrowing Primitive Conversions

The following 22 specific conversions on primitive types are called the narrowing
primitive conversions:
e short to byte or char

e char to byte or short

* int to byte, short, or char

* long to byte, short, char, Or int

e float to byte, short, char, int, or Tong

* double to byte, short, char, int, lTong, or float

Narrowing conversions may |lose information about the overall magnitude of a
numeric value and may also lose precision.

A narrowing conversion of a signed integer to an integral type T simply dis-
cards all but the n lowest order bits, where n is the number of bits used to repre-
sent type T. In addition to a possible loss of information about the magnitude of
the numeric value, this may cause the sign of the resulting value to differ from the
sign of the input value.

A narrowing conversion of a char to an integral type T likewise simply dis-
cards all but the n lowest order bits, where n is the number of bits used to repre-
sent type T. In addition to a possible loss of information about the magnitude of
the numeric value, this may cause the resulting value to be a negative number,
even though chars represent 16-bit unsigned integer values.

A narrowing conversion of afloating-point number to an integral type T takes
two steps:

1. Inthefirst step, the floating-point number is converted either to along, if T is
Tong, ortoan int, if T isbyte, short, char, or int, asfollows:

o If the floating-point number is NaN (84.2.3), the result of the first step of
the conversionisan int or Tong 0.

o Otherwise, if the floating-point number is not an infinity, the floating-point
value is rounded to an integer value v, rounding toward zero using |[EEE
754 round-toward-zero mode (84.2.3). Then there are two cases:

o If T isTong, and thisinteger value can be represented as a Tong, then the
result of thefirst step isthe Tong value V.

o Otherwise, if this integer value can be represented as an int, then the
result of thefirst step isthe int valueV.

o Otherwise, one of the following two cases must be true:

CONVERS ONS AND PROMOTIONS Narrowing Primitive Conversions 5.1.3

o The value must be too small (a negative value of large magnitude or nega-
tive infinity), and the result of the first step is the smallest representable
value of type int or Tong.

o The value must be too large (a positive value of large magnitude or posi-
tive infinity), and the result of the first step is the largest representable
value of type int or Tong.

2. In the second step:
o If Tisint or Tong,the result of the conversion is the result of the first step.

o If T isbyte, char, or short, the result of the conversion is the result of a
narrowing conversion to type T (85.1.3) of the result of the first step.

The example:
class Test {

public static void main(String[] args) {

float fmin = Float.NEGATIVE_INFINITY;

float fmax = Float.POSITIVE_INFINITY;

System.out.printin("long: " + (long)fmin +
".." + (long)fmax);

System.out.printIn("int: " + (int)fmin +
"M+ (int)fmax);

System.out.printin("short: " + (short)fmin +
".." + (short)fmax);

System.out.printin("char: " + (int)(char)fmin +
".." + (int) (char)fmax);

System.out.printin("byte: " + (byte)fmin +
"""+ (byte)fmax);

}

produces the output:
Tong: -9223372036854775808..9223372036854775807
int: -2147483648..2147483647

short: 0..-1
char: 0..65535
byte: 0..-1

Theresultsfor char, int, and Tong are unsurprising, producing the minimum
and maximum representabl e values of the type.

The results for byte and short lose information about the sign and magni-
tude of the numeric values and also lose precision. The results can be understood
by examining the low order bits of the minimum and maximum int. The mini-
mum int is, in hexadecimal, 0x80000000, and the maximum int isOx7fffffff.
This explainsthe short results, which are the low 16 bits of these values, namely,

83

514

Wi dening and Narrowing Primitive Conversions CONVERSIONS AND PROMOTIONS

0x0000 and Oxffff; it explainsthe char results, which also are the low 16 bits of
these values, namely, '\u0000' and '\uffff'; and it explains the byte results,
which are the low 8 bits of these values, namely, 0x00 and Oxff.

Despite the fact that overflow, underflow, or other loss of information may
occur, narrowing conversions among primitive types never result in a run-time
exception (811).

Hereisasmall test program that demonstrates a number of narrowing conver-
sions that lose information:

class Test {

public static void main(String[] args) {
// A narrowing of int to short loses high bits:
System.out.printIn(" (short)0x12345678==0x" +
Integer.toHexString((short)0x12345678));
// A int valuenot fitting in byte changes sign and magnitude:
System.out.printin("(byte)255==" + (byte)255);

// A float valuetoo big to fit gives largest int value:
System.out.printIn("(int)1e20f==" + (int)1e20f);

// A NaN converted to int yields zero:
System.out.println(" (int)NaN==" + (int)Float.NaN);

// A double valuetoo large for float yieldsinfinity:
System.out.printIn("(float)-1el00==" + (float)-1e100);

// A double valuetoo small for f1oat underflowsto zero:
System.out.printIn("(float)le-50==" + (float)le-50);

}

This test program produces the following output:
(short)0x12345678==0x5678
(byte)255==-1
(int)1e20f==2147483647
(int)NaN==0
(float)-1el00==-Infinity
(float)1le-50==0.0

5.1.4 Widening and Narrowing Primitive Conversions

The following conversion combines both widening and narrowing primitive con-
vesions:

CONVERS ONS AND PROMOTIONS Narrowing Reference Conversions

* byte to char

First, the byte is converted to an int viawidening primitive conversion, and then
the resulting int is converted to a char by narrowing primitive conversion.

5.1.5 Widening Reference Conversions

A widening reference conversion exists from any type s to any type T, provided S
is asubtype (84.10) of T.

Widening reference conversions never require a special action at run time and
therefore never throw an exception at run time. They consist simply in regarding a
reference as having some other type in a manner that can be proved correct at
compiletime.

See 88 for the detailed specifications for classes, 89 for interfaces, and 8§10 for
arrays.

5.1.6 Narrowing Reference Conversions

The following conversions are called the narrowing reference conversions :

» From any reference type s to any reference type T, provided that S is a
proper supertype (84.10) of T. (Animportant special caseisthat thereisanar-
rowing conversion from the class type Object to any other reference type.)

* From any class type C to any non-parameterized interface type K, provided
that C is not final and does not implement K .

» From any interface type J to any non-parameterized class type C that is not
final.

* From the interface types Cloneable and java.io.Serializable to any
array type T[].

* From any interface type J to any non-parameterized interface type K, pro-
vided that J is not a subinterface of K.

» From any array type SC[] to any array type TC[], provided that sc and TC
are reference types and there is a narrowing conversion from sc to TC.

Such conversions require atest at run time to find out whether the actual reference
valueis alegitimate value of the new type. If not, then aClassCastExceptionis
thrown.

5.16

85

517

86

Boxing Conversion CONVERSIONS AND PROMOTIONS

5.1.7 Boxing Conversion

Boxing conversion converts values of primitive type to corresponding values of
reference type. Specifically, the following 8 conversion are called the boxing con-
Versions:

From type boolean to type Boolean
From type byte to type Byte

From type char to type Character
From type short to type Short
From type int to type Integer
From type Tong to type Long

From type float to type Float
From type double to type Double

At run time, boxing conversion proceeds as follows:

If p isavalue of type boolean, then boxing conversion converts p into arefer-
ence r of class and type Boolean, such that r.booleanvalue() == p

If pisavalue of type byte, then boxing conversion converts p into areference
r of classand type Byte, such that r.bytevValue() == p

If p isavalue of type char, then boxing conversion converts p into areference
r of classand type Character, such that r.charvalue() == p

If p isavalue of type short, then boxing conversion converts p into a refer-
ence r of class and type Short, such that r.shortvalue() == p

If pisavalue of type int, then boxing conversion converts p into areference
r of classand type Integer, suchthat r.intvValue() == p

If p isavalue of type 1ong, then boxing conversion converts p into areference
r of classand type Long, such that r.Tongvalue() == p

If pisavaue of type float then:;

o If p is not NaN, then boxing conversion converts p into a reference r of
classand type Float, such that r.floatValue() evaluatesto p

o Otherwise, boxing conversion convertsp intop areference r of classand type
Float such that r.isNaN() evaluatesto true.

If p isavalue of type double, then

CONVERS ONS AND PROMOTIONS Boxing Conversion

o If pisnot NaN, boxing conversion converts p into areference r of class and
type Double, such that r.doublevValue() evaluatesto p

o Otherwise, boxing conversion converts p into areference r of class and type
DoubTle such that r.isNaN() evaluatesto true.

 If pisavalue of any other type, boxing conversion is equivalent to an identity
conversion (5.1.1).

If the value p being boxed is true, false, abyte, a char in the range \u0000 to
\u0Q7f, or an int or short number between -128 and 127, then let r1 and r2 be
the results of any two boxing conversions of p. It is aways the case that r1 ==
r2.

DiscussioN

Ideally,p boxing a given primitive value p, would always yield an identical reference. In prac-
tice, this may not be feasible using existing implementation techniques. The rules above
are a pragmatic compromise. The final clause above requires that certain common values
always be boxed into indistinguishable objects. The implementation may cache these, lazily
or eagerly.

For other values, this formulation disallows any assumptions about the identity of the
boxed values on the programmer's part.p This would allow (but not require) sharing of some
or all of these references.

This ensures that in most common cases, the behavior will be the desired one, without
imposing an undue performance penalty, especially on small devices. Less memory-limited
implementations might, for example, cache all characters and shorts, as well as integers
and longs in the range of -32K - +32K.

A boxing conversion may result in an OutOfMemoryError if a new instance of
one of the wrapper classes (Boolean, Byte, Character, Short, Integer, Long,
Float, or Doub1e) needs to be allocated and insufficient storage is available.

5.1.7

87

518

88

Unboxing Conversion CONVERS ONS AND PROMOTIONS

5.1.8 Unboxing Conversion

Unboxing conversion converts values of reference type to corresponding val ues of
primitive type. Specifically, the following 8 conversion are called the unboxing
conversions:

From type Boolean to type booTlean
From type Byte to type byte

From type Character to type char
From type Short to type short
From type Integer totypeint
From type Long to type Tong

From type Float to type float
From type DoubTle to type double

At run time, unboxing conversion proceeds as follows:

If r isareference of type Boolean, then unboxing conversion converts r into
r.booleanValue()

If r is areference of type Byte, then unboxing conversion converts r intop
r.bytevValue()

If r is areference of type Character, then unboxing conversion converts r
into r.charvalue()

If r is areference of type Short, then unboxing conversion converts r into
r.shortValue()

If r isareference of type Integer, then unboxing conversion converts r into
r.intValue(Q)

If r is areference of type Long, then unboxing conversion converts r into
r.TongValue()

If r is a reference of type Float, unboxing conversion converts r intop
r.floatValue()

If r is areference of type Double, then unboxing cornversion converts r into
r.doublevalue()

If risnu11, unboxing conversion throwsaNu11PointerException

CONVERS ONS AND PROMOTIONS Capture Conversion 5.1.10

A typeis said to be convertible to a numeric type if it isa numeric type, or itisa
reference type that may be converted to anumeric type by unboxing conversion. A
type is said to be convertible to an integral type if it is an integral type, or itisa
reference type that may be converted to an integral type by unboxing conversion.

5.1.9 Unchecked Conversion

Let G name a generic type declaration with n formal type parameters. Thereis
an unchecked conversion from the raw type (84.8) G to any parameterized type of
theformG<T1 ... Tp>. Use of an unchecked conversion generates a mandatory
compile-time warning (which can only be suppressed using the SuppressWarn-
ings annotation (89.6.1.5)) unless the parameterized type G is a parameterized
type in which al type arguments are unbounded wildcards (84.5.1).

DiscussioN

Unchecked conversion is used to enable a smooth interoperation of legacy code, written
before the introduction of generic types, with libraries that have undergone a conversion to
use genericity (a process we call generification).

In such circumstances (most notably, clients of the collections framework in
java.util), legacy code uses raw types (e.g., Collection instead of Collec-
tion<String>). Expressions of raw types are passed as arguments to library methods
that use parameterized versions of those same types as the types of their corresponding
formal parameters.

Such calls cannot be shown to be statically safe under the type system using generics.
Rejecting such calls would invalidate large bodies of existing code, and prevent them from
using newer versions of the libraries. This in turn, would discourage library vendors from
taking advantage of genericity.

To prevent such an unwelcome turn of events, a raw type may be converted to an arbi-
trary invocation of the generic type declaration the raw type refers to. While the conversion
is unsound, it is tolerated as a concession to practicality. A warning (known as an
unchecked warning) is issued in such cases.

5.1.10 Capture Conversion

Let G name a generic type declaration with n formal type parameters A1
An with corresponding boundsUy ... Up. There exists a capture conversion from
G<T1 ... Tp>t0G<S;y ... Sp>, where for 1<i<n:

89

5.1.10 Capture Conversion CONVERS ONSAND PROMOTIONS

90

If T§ isawildcard type argument (84.5.1) of the form ? then S; isafresh type
variable whose upper bound is Uj[A1 = S1, ..., An := Sp] and whose lower
bound is the null type.

If T3 isawildcard type argument of the form ? extends Bj, then S5 isa
fresh type variable whose upper bound is glb(Bj, Uj[A1 :=S1, ..y An :=Snl)
and whose lower bound isthe null type, where glb(v1, ... ,Vyp)isVy & ...
& Vp_ Itisacompile-time error if for any two classes (not interfaces) v and
Vj,Vj isnotasubclassof vj or vice versa

If T3 isawildcard type argument of the form ? super Bj, then S isafresh
type variable whose upper bound is Uj[A1 := Sq, ..., An := Su] and whose
lower bound is Bj.

Otherwise, Sj = Tj-

Capture conversion on any type other than a parameterized type (84.5) acts as

an identity conversion (85.1.1). Capture conversions never require a special action
at run time and therefore never throw an exception at run time.

Capture conversion is not applied recursively.

DiscussioN

Capture conversion is designed to make wildcards more useful. To understand the motiva-
tion, let's begin by looking at the method java.util.Collections.reverse():

pubTlic static void reverse(List<?> Tist);

The method reverses the list provided as a parameter. It works for any type of list, and

so the use of the wildcard type List<?> as the type of the formal parameter is entirely
appropriate.

Now consider how one would implement reverse().

pubTlic static void reverse(List<?> Tist) { rev(list);}
private static <T> void rev(List<T> Tist) {
List<T> tmp = new ArrayList<T>(list);
for (int i = 0; i < list.size(Q); i++) {
Tist.set(i, tmp.get(list.size() - i - 1));
3
h

The implementation needs to copy the list, extract elements from the copy , and insert

them into the original. To do this in a type safe manner, we need to give a name, T, to the
element type of the incoming list. We do this in the private service method rev() .

CONVERS ONS AND PROMOTIONS Capture Conversion

This requires us to pass the incoming argument list, of type List<?>, as an argument
to rev() . Note that in general, List<?> is a list of unknown type. It is not a subtype of
List<T>, for any type T. Allowing such a subtype relation would be unsound. Given the
method:

pubTlic static <T> void fill1(List<T> 1, T obj)

a call
List<String> 1s = new ArraylList<String>(Q);
List<?> 1 = 1s;
Collections.fiT11(1, new Object()); // not really legal - but assume
// it was
String s = 1s.get(0); // ClassCastException - 1s contains Objects,
//not Strings.

would undermine the type system.

So, without some special dispensation, we can see that the call from reverse() to
rev() would be disallowed. If this were the case, the author of reverse() would be
forced to write its signature as:

pubTlic static <T> void reverse(List<T> Tist)

This is undesirable, as it exposes implementation information to the caller. Worse, the
designer of an APl might reason that the signature using a wildcard is what the callers of
the API require, and only later realize that a type safe implementation was precluded.

The call from reverse() to rev() is in fact harmless, but it cannot be justified on the
basis of a general subtyping relation between List<?> and List<T>. The call is harm-
less, because the incoming argument is doubtless a list of some type (albeit an unknown
one). If we can capture this unknown type in a type variable X, we can infer T to be X. That
is the essence of capture conversion. The specification of course must cope with complica-
tions, like non-trivial (and possibly recursively defined) upper or lower bounds, the pres-
ence of multiple arguments etc.

DiscussioN

Mathematically sophisticated readers will want to relate capture conversion to established
type theory. Readers unfamiliar with type theory can skip this discussion - or else study a
suitable text, such as Types and Programming Languages by Benjamin Pierce, and then
revisit this section.

Here then is a brief summary of the relationship of capture conversion to established
type theoretical notions.

Wildcard types are a restricted form of existential types. Capture conversion corre-
sponds loosely to an opening of a value of existential type. A capture conversion of an
expression e, can be thought of as an open of e in a scope that comprises the top-level
expression that encloses e.

5.1.10

91

51.11 Sring Conversions CONVERS ONS AND PROMOTIONS

92

The classical open operation on existentials requires that the captured type variable
must not escape the opened expression. The open that corresponds to capture conversion
is always on a scope sufficiently large that the captured type variable can never be visible
outside that scope.

The advantage of this scheme is that there is no need for a close operation, as
defined in the paper On Variance-Based Subtyping for Parametric Types by Atsushi Iga-
rashi and Mirko Viroli, in the proceedings of the 16th European Conference on Object Ori-
ented Programming (ECOOP 2002).

For a formal account of wildcards, see Wild FJ by Mads Torgersen, Erik Ernst and
Christian Plesner Hansen, in the 12th workshop on Foundations of Object Oriented Pro-
gramming (FOOL 2005).

5.1.11 String Conversions

There is a string conversion to type String from every other type, including the
null type. See (85.4) for details of the string conversion context.

5.1.12 Forbidden Conversions

Any conversion that is not explicitly allowed is forbidden.

5.1.13 Value Set Conversion

Value set conversion is the process of mapping a floating-point value from one
value set to another without changing its type.

Within an expression that is not FP-strict (815.4), value set conversion pro-
vides choices to an implementation of the Java programming language:

* If the value is an element of the float-extended-exponent value set, then the
implementation may, at its option, map the value to the nearest element of the
float value set. This conversion may result in overflow (in which case the
value is replaced by an infinity of the same sign) or underflow (in which case
the value may lose precision because it is replaced by a denormalized number
or zero of the same sign).

* If the value is an element of the double-extended-exponent value set, then the
implementation may, at its option, map the value to the nearest element of the
double value set. This conversion may result in overflow (in which case the
value is replaced by an infinity of the same sign) or underflow (in which case
the value may lose precision because it is replaced by a denormalized number
or zero of the same sign).

CONVERS ONS AND PROMOTIONS Assignment Conversion

Within an FP-strict expression (815.4), value set conversion does not provide
any choices; every implementation must behave in the same way:

* If thevalueis of type float and is not an element of the float value set, then
the implementation must map the value to the nearest element of the float
value set. This conversion may result in overflow or underflow.

* If the value is of type double and is not an element of the double value set,
then the implementation must map the value to the nearest element of the dou-
ble value set. This conversion may result in overflow or underflow.

Within an FP-strict expression, mapping values from the float-extended-exponent
value set or double-extended-exponent value set is necessary only when a method
is invoked whose declaration is not FP-strict and the implementation has chosen
to represent the result of the method invocation as an element of an extended-
exponent value set.

Whether in FP-strict code or code that is not FP-strict, value set conversion
always leaves unchanged any value whose type is neither float nor doubTe.

5.2 Assignment Conversion

Assignment conversion occurs when the value of an expression is assigned
(815.26) to avariable: the type of the expression must be converted to the type of
the variable. Assignment contexts alow the use of one of the following:

* anidentity conversion (85.1.1)
+ awidening primitive conversion (85.1.2)
 awidening reference conversion (85.1.5)

* pa boxing conversion (85.1.7) optionally followed by a widening reference
conversion

 an unboxing conversion (85.1.8) optionally followed by a widening primitive
conversion.

If, after the conversions listed above have been applied, the resulting typeisa
raw type (84.8), unchecked conversion (85.1.9) may then be applied. It is a com-
pile time error if the chain of conversions contains two parameterized types that
are not not in the subtype relation.

52

93

52

94

Assignment Conversion CONVERS ONS AND PROMOTIONS

DiscussioN

An example of such an illegal chain would be:

Integer, Comparable<Integer>, Comparable, Comparable<String>

The first three elements of the chain are related by widening reference conversion,
while the last entry is derived from its predecessor by unchecked conversion. However, this
dis not a valid assignment conversion, because the chain contains two parameterized
types, Comparable<Integer> and Comparable<String>, that are not subtypes.

In addition, if the expression is a constant expression (815.28) of type byte,
short, charorint:

» A narrowing primitive conversion may be used if the type of the variable is
byte, short, or char, and the value of the constant expression is represent-
able in the type of the variable.

» A narrowing primitive conversion followed by a boxing conversion may be
used if thetype of the variableis:

o Byte and the value of the constant expression is representable in the type
byte.

o Short and the value of the constant expression is representable in the type
short.

o Character and the value of the constant expression is representable in the
type char.

If the type of the expression cannot be converted to the type of the variable by
a conversion permitted in an assignment context, then a compile-time error
occurs.

If the type of the variable is float or doubTle, then value set conversion is
applied to the value v that is the results of the type conversion:

» If visof type float and is an element of the float-extended-exponent value
set, then the implementation must map v to the nearest element of the float
value set. This conversion may result in overflow or underflow.

» If vis of type double and is an element of the double-extended-exponent
value set, then the implementation must map v to the nearest element of the
double value set. This conversion may result in overflow or underflow.

CONVERS ONS AND PROMOTIONS Assignment Conversion

If the type of an expression can be converted to the type of a variable by
assignment conversion, we say the expression (or its value) is assignable to the
variable or, equivaently, that the type of the expression is assignment compatible
with the type of the variable.

If, after the type conversions above have been applied, the resulting value is
an object which is not an instance of a subclass or subinterface of the erasure of
the type of the variable, then aClassCastException isthrown.

DiscussioN

This circumstance can only arise as a result of heap pollution (84.12.2.1).

In practice, implementations need only perfom casts when accessing a field or method
of an object of parametized type, when the erased type of the field, or the erased result
type of the method differ from their unerased type.

The only exceptions that an assignment conversion may cause are:
* AnOutOfMemoryError asaresult of aboxing conversion.
* A ClassCastException inthe specia circumstances indicated above.

* A NullPointerException as aresult of an unboxing conversion on a null
reference.

(Note, however, that an assignment may result in an exception in special cases
involving array elements or field access —see §10.10 and §15.26.1.)

The compile-time narrowing of constants means that code such as:

byte theAnswer = 42;
is allowed. Without the narrowing, the fact that the integer literal 42 hastype int
would mean that a cast to byte would be required:

byte theAnswer = (byte)42;// castispermitted but not required

The following test program contains examples of assignment conversion of
primitive values:

class Test {

public static void main(String[] args) {
short s = 12; // narrow 12 to short
float f = s; // widen short to float
System.out.printin("f=" + f);
char ¢ = "\u0123';

Tong 1 = c; // widen char to Tong

52

95

52

96

Assignment Conversion CONVERS ONS AND PROMOTIONS

System.out.printIn("1=0x" + Long.toString(1,16));

f = 1.23f;
double d = f; // widen float todouble
System.out.printin("d=" + d);
}
}
It produces the following output:
f=12.0
1=0x123

d=1.2300000190734863

The following test, however, produces compile-time errors:
class Test {

public static void main(String[] args) {
short s = 123;
char c = s; // error: would require cast
s = C; // error: would require cast

}

because not all short values are char values, and neither are al char values
short values.

A value of the null type (the null reference is the only such value) may be
assigned to any reference type, resulting in anull reference of that type.

Hereis asample program illustrating assignments of references:
public class Point { int x, y; }

public class Point3D extends Point { int z; }

public interface Colorable {
void setColor(int color);

}
public class ColoredPoint extends Point implements Colorable
{

int color;

public void setColor(int color) { this.color = color; }

}

class Test {
public static void main(String[] args) {
// Assignments to variables of classtype:
Point p = new Point(Q);
p = new Point3D(); // ok: becausePoint3Disa
// subclass of Point

CONVERS ONS AND PROMOTIONS Assignment Conversion

Point3D p3d = p; // error: will require a cast because a
// Point might not beaPoint3D
// (eventhoughitis, dynamically,
// inthisexample)

// Assignmentsto variables of type Object:

Object o = p; // OK: any object to Object
int[] a = new int[3];
Object 02 = a; // ok:anarray toObject

// Assignments to variables of interface type:
ColoredPoint cp = new ColoredPoint();
Colorable c = cp; // ok:ColoredPoint implements
// Colorable
// Assignmentsto variables of array type:
byte[] b = new byte[4];
a=b; // error; these are not arrays
// of the same primitive type
Point3D[] p3da = new Point3D[3];
Point[] pa = p3da; // ok:sincewe canassigna
// Point3DtoaPoint
p3da = pa; // error: (cast needed) since aPoint
// can't be assigned to aPoint3D

}

The following test program illustrates assignment conversions on reference
values, but fails to compile, as described in its comments. This example should be
compared to the preceding one.

public class Point { int x, y; }

public interface Colorable { void setColor(int color); }

public class ColoredPoint extends Point implements Colorable

{

int color;

public void setColor(int color) { this.color = color; }
}
class Test {

public static void main(String[] args) {

Point p = new Point();

ColoredPoint cp = new ColoredPoint();

// Okay because ColoredPoint isasubclass of Point:

p = Cp;

// Okay because ColoredPoint implements Colorable:
Colorable c = cp;

52 Assignment Conversion CONVERS ONS AND PROMOTIONS

}

// Thefollowing cause compile-time errors because

// we cannot be sure they will succeed, depending on

// therun-time type of p; arun-time check will be

// necessary for the needed narrowing conversion and

// must be indicated by including a cast:

cp = p; // p might beneither aColoredPoint
// nor asubclass of ColoredPoint

c = p; // p might not implement Colorable

Here is another example involving assignment of array objects:
class Point { int x, y; }

class ColoredPoint extends Point { int color; }

class Test {

}

public static void main(String[] args) {

Tong[] veclong = new Tong[100];

Object o = veclong; // okay

Long 1 = veclong; // compile-time error

short[] vecshort = veclong;// compile-timeerror

Point[] pvec = new Point[100];

ColoredPoint[] cpvec = new ColoredPoint[100];

pvec = cpvec; // okay

pvec[0] = new PointQ); // okay at compiletime,
// but would throw an
// exception at run time

cpvec = pvec; // compile-time error

In this example:

* The value of veclong cannot be assigned to a Long variable, because Long
is a class type other than Object. An array can be assigned only to a variable
of a compatible array type, or to a variable of type Object, Cloneable or
java.io.Serializable.

» The value of veclong cannot be assigned to vecshort, because they are
arrays of primitive type, and short and Tong are not the same primitive type.

* The value of cpvec can be assigned to pvec, because any reference that
could be the value of an expression of type ColoredPoint can be the value of
avariable of type Point. The subsequent assignment of the new Point to a
component of pvec then would throw an ArrayStoreException (if the pro-
gram were otherwise corrected so that it could be compiled), because a

98

CONVERS ONS AND PROMOTIONS Method Invocation Conversion

ColoredPoint array can’t have an instance of Point as the value of a com-
ponent.

» The value of pvec cannot be assigned to cpvec, because not every reference
that could be the value of an expression of type ColoredPoint can correctly
be the value of avariable of type Point. If the value of pvec at runtime were
a reference to an instance of Point[], and the assignment to cpvec were
alowed, a simple reference to a component of cpvec, say, cpvec[0], could
return a Point, and a Point is not a ColoredPoint. Thus to allow such an
assignment would allow a violation of the type system. A cast may be used
(85.5, 815.16) to ensure that pvec referencesaColoredPoint[]:

cpvec = (ColoredPoint[])pvec;// okay, but may throw an
// exception at run time

5.3 Method Invocation Conversion

Method invocation conversion is applied to each argument value in a method or
constructor invocation (88.8.7.1, 815.9, §15.12): the type of the argument expres-
sion must be converted to the type of the corresponding parameter. Method invo-
cation contexts allow the use of one of the following:

* anidentity conversion (85.1.1)
» awidening primitive conversion (85.1.2)
» awidening reference conversion (85.1.5)

» aboxing conversion (85.1.7) optionally followed by widening reference con-
version

* an unboxing conversion (85.1.8) optionally followed by a widening primitive
conversion.

If, after the conversions listed above have been applied, the resulting typeisa
raw type (84.8), an unchecked conversion (85.1.9) may then be applied. It is a
compile time error if the chain of conversions contains two parameterized types
that are not not in the subtype relation.

If the type of an argument expression is either float or double, then value
set conversion (85.1.13) is applied after the type conversion:

« If an argument value of type float isan element of the float-extended-expo-
nent value set, then the implementation must map the value to the nearest ele-

53

99

5.3

100

Method Invocation Conversion CONVERS ONS AND PROMOTIONS

ment of the float value set. This conversion may result in overflow or
underflow.

* If an argument value of type double is an element of the double-extended-
exponent val ue set, then the implementation must map the value to the nearest
element of the double value set. This conversion may result in overflow or
underflow.

If, after the type conversions above have been applied, the resulting value is
an object which is not an instance of a subclass or subinterface of the erasure of
the corresponding formal parameter type, then aClassCastException isthrown.

DiscussioN

This circumstance can only arise as a result of heap pollution (84.12.2.1).

Method invocation conversions specifically do not include the implicit nar-
rowing of integer constants which is part of assignment conversion (85.2). The
designers of the Java programming language felt that including these implicit nar-
rowing conversions would add additional complexity to the overloaded method
matching resolution process (815.12.2).

Thus, the example:

class Test {

static int m(byte a, int b) { return a+b; }
static int m(short a, short b) { return a-b; }

public static void main(String[] args) {
System.out.println(m(12, 2));// compile-time error
}

}

causes acompile-time error because the integer literals 12 and 2 havetype int, so
neither method m matches under the rules of (815.12.2). A language that included
implicit narrowing of integer constants would need additional rules to resolve
cases like this example.

CONVERS ONS AND PROMOTIONS Casting Conversion

5.4 String Conversion

String conversion applies only to the operands of the binary + operator when one
of the argumentsisaString. In thissingle special case, the other argument to the
+ is converted to a String, and a new String which is the concatenation of the
two strings is the result of the +. String conversion is specified in detail within the
description of the string concatenation + operator (815.18.1).

5.5 Casting Conversion

Casting conversion is applied to the operand of a cast operator (§15.16): the type
of the operand expression must be converted to the type explicitly named by the
cast operator. Casting contexts alow the use of:

 anidentity conversion (85.1.1)
» awidening primitive conversion (85.1.2)
» anharrowing primitive conversion (85.1.3)

* a widening reference conversion (85.1.5) optionaly followed by an
unchecked conversion (85.1.9)

* a narrowing reference conversion (85.1.6) optionally followed by an
unchecked conversion

 aboxing conversionp (85.1.7)

* an unboxing conversion (85.1.8).

Thus casting conversions are more inclusive than assignment or method invo-
cation conversions. a cast can do any permitted conversion other than a string con-
version or a capture conversion (85.1.10).

Value set conversion (85.1.13) is applied after the type conversion.

Some casts can be proven incorrect at compile time; such casts result in a
compile-time error.

A value of a primitive type can be cast to another primitive type by identity
conversion, if the types are the same, or by a widening primitive conversion or a
narrowing primitive conversion.

55

101

55

102

Casting Conversion CONVERS ONS AND PROMOTIONS

A value of a primitive type can be cast to a reference type by boxing conver-
sion (85.1.7).

A value of areference type can be cast to a primitive type by unboxing con-
version (85.1.8).

The remaining cases involve conversion of a compile-time reference type s
(source) to a compile-time reference type T (target).

A cast from atype s to atype T is statically known to be correct if and only if
S <: T (84.10).

A cast from atype S to a parameterized type (84.5) T is unchecked unless at
least one of the following conditions hold:

e S<IT.
* All of the type arguments (84.5.1) of T are unbounded wildcards.

* T<:Sands hasno subtype x =7 , such that the erasures (84.6) of x and T are
the same.

A cast to atype variable (84.4) is always unchecked.

An unchecked cast from S to T is completely unchecked if the cast from S| to
[T| is statically known to be correct. Otherwise it is partially unchecked. An
unchecked cast causes an unchecked warning to occur (unless it is suppressed
using the SuppressWarnings annotation (89.6.1.5)).

A cast is a checked cast if it is not statically known to be correct and it is not
unchecked.

The detailed rules for compile-time legality of a casting conversion of avalue
of compile-time reference type S to a compile-time reference type T are as fol-
lows:

» If sisaclasstype:

o If T isaclass type, then either |S| <: |T|,or |T| <: |s]|; otherwise a
compile-time error occurs. Furthermore, if there exists a supertype X of T,
and a supertype Y of S, such that both X and Y are provably distinct parame-
terized types (84.5), and that the erasures of X and Y are the same, a com-
pile-time error occurs.

o If T isaninterface type:

o If siisnot afinal class (88.1.1), then, if there exists a supertype X of T,
and a supertype Y of s, such that both X and Y are provably distinct param-
eterized types, and that the erasures of X and Y are the same, a compile-
time error occurs. Otherwise, the cast is always legal at compile time
(because even if S does not implement T, a subclass of S might).

CONVERS ONS AND PROMOTIONS Casting Conversion 55

o If Sisafinal class(88.1.1), then S must implement T, or acompile-time
error Occurs.

o If T isatype variable, then this algorithm is applied recursively, using the
upper bound of T in place of T.

o If T is an array type, then S must be the class Object, or a compile-time
error occurs.

 If s isaninterface type:

o If T is an array type, then T must implement S, or a compile-time error
OCCurs.

o If Tisa typethat isnot final (88.1.1), then if there exists a supertype X of
T, and asupertype Y of S, such that both X and Y are provably distinct param-
eterized types, and that the erasures of X and Y are the same, a compile-time
error occurs. Otherwise, the cast is aways legal at compile time (because
even if T does not implement s, a subclass of T might).

o If Tisa typethatis final, then:

o If Sisnot aparameterized type or araw type, then T must implement S,
and the cast is statically known to be correct, or a compile-time error
OCCUrs.

o Otherwise, S is either a parameterized type that is an invocation of some
generic type declaration G, or a raw type corresponding to a generic type
declaration G. Then there must exist a supertype X of T, such that X is an
invocation of G, or a compile-time error occurs. Furthermore, if S and X
are provably distinct parameterized types then a compile-time error
occurs.

* If s is atype variable, then this algorithm is applied recursively, using the
upper bound of s in place of s.
e If sSisanarray typeSc[], that is, an array of components of type SC:

o If Tisaclasstype, thenif T isnot Object, then acompile-time error occurs
(because Object isthe only class type to which arrays can be assigned).

o If T is an interface type, then a compile-time error occurs unless T is the
type java.io.Serializable or the type Cloneable, the only interfaces
implemented by arrays.

o If T isatype variable, then:

103

55

104

Casting Conversion CONVERS ONS AND PROMOTIONS

o If the upper bound of TisObject or thetype java.io.Serializable or
the type Cloneable, or atype variable that S could legally be cast to by
recursively applying these rules, then the cast islegal (though unchecked).

o If the upper bound of T is an array type TC[], then a compile-time error
occurs unless the type SC[] can be cast to TC[] by arecursive applica
tion of these compile-time rules for casting.

o Otherwise, a compile-time error aoccurs.

o If Tisanarray typeTC[], that is, an array of components of type TC, then a
compile-time error occurs unless one of the following is true:
o TC and SC are the same primitive type.

o TC and ScC are reference types and type SC can be cast to TC by arecursive
application of these compile-time rules for casting.

See 88 for the specification of classes, 89 for interfaces, and 810 for arrays.

If acast to areference typeisnot acompile-time error, there are several cases:

The cast is statically known to be correct. No run time action is performed for
such acast.

The cast is a completely unchecked cast. No run time action is performed for
such acast.

The cast is a partially unchecked cast. Such a cast requires arun-time validity
check. The check is performed asiif the cast had been a checked cast between
[s| and |T|, as described below.

The cast is a checked cast. Such a cast requires a run-time validity check. If
the value at run timeis nu11, then the cast is allowed. Otherwise, let R be the
class of the object referred to by the run-time reference value, and let T be the
erasure of the type named in the cast operator. A cast conversion must check,
a run time, that the class R is assignment compatible with the type T. (Note
that R cannot be an interface when these rules are first applied for any given
cast, but R may be an interface if the rules are applied recursively because the
run-time reference value may refer to an array whose element type is an inter-
face type.) The algorithm for performing the check is shown here:

o If R isan ordinary class (not an array class):

o If T isaclasstype, then R must be either the same class (§84.3.4) asT or a
subclass of T, or arun-time exception is thrown.

CONVERS ONS AND PROMOTIONS Casting Conversion 55

o If T isan interface type, then R must implement (88.1.5) interface T, or a
run-time exception is thrown.

o If T isan array type, then arun-time exception is thrown.
o If R isaninterface:

o If T isaclasstype, then T must be Object (84.3.2), or arun-time excep-
tion isthrown.

o If T isan interface type, then R must be either the same interfaceasT or a
subinterface of T, or arun-time exception is thrown.

o If T isan array type, then arun-time exception is thrown.

o If R isaclass representing an array type RC []—that is, an array of compo-
nents of typeRC:

o If T isaclasstype, then T must be Object (84.3.2), or a run-time excep-
tion isthrown.

o If T isan interface type, then a run-time exception is thrown unless T is
thetype java.io.Serializable or the type Cloneable, the only inter-
faces implemented by arrays (this case could dip past the compile-time
checking if, for example, areference to an array were stored in a variable
of typeObject).

o If Tisanarray typeTC[], that is, an array of components of type TC, then
arun-time exception is thrown unless one of the following is true:

o TC and RC are the same primitive type.

o TC and RC are reference types and type RC can be cast to TC by arecur-
sive application of these run-time rules for casting.

If arun-time exception isthrown, itisaClassCastException.

Here are some examples of casting conversions of reference types, similar to
the examplein 85.2:

public class Point { int x, y; }

public interface Colorable { void setColor(int color); }

public class ColoredPoint extends Point implements Colorable

{
int color;
public void setColor(int color) { this.color = color; }

}

final class EndPoint extends Point { }

105

55 Casting Conversion CONVERS ONS AND PROMOTIONS

class Test {
public static void main(String[] args) {

Point p = new Point();

ColoredPoint cp = new ColoredPoint();

Colorable c;

// Thefollowing may cause errors at run time because

// we cannot be sure they will succeed; this possibility

// issuggested by the casts:

cp = (ColoredPoint)p;// p might not reference an
// object whichisaColoredPoint
// or asubclass of ColoredPoint

c = (Colorable)p; // p might not beColorable

// Thefollowing are incorrect at compile time because

// they can never succeed as explained in the text:
Long 1 = (Long)p; // compile-timeerror #1
EndPoint e = new EndPoint();

c = (Colorable)e; // compile-time error #2

}

Here the first compile-time error occurs because the class types Long and Point
are unrelated (that is, they are not the same, and neither is a subclass of the other),
S0 a cast between them will always fail.

The second compile-time error occurs because a variable of type EndPoint
can never reference a value that implements the interface Colorable. This is
because EndPoint isafinal type, and avariable of a final type dways holds a
value of the same run-time type as its compile-time type. Therefore, the run-time
type of variable e must be exactly the type EndPoint, and type EndPoint does
not implement ColorabTe.

Hereis an example involving arrays (810):

class Point {

int x, y;

Point(int x, int y) { this.x = x; this.y =y; }

public String toString() { return "("+x+","+y+")"; }
}

public interface Colorable { void setColor(int color); }

public class ColoredPoint extends Point implements Colorable

{

int color;

106

CONVERS ONS AND PROMOTIONS Casting Conversion

ColoredPoint(int x, int y, int color) {
super(x, y); setColor(color);
}

public void setColor(int color) { this.color = color; }

public String toString() {
return super.toString() + "@" + color;
}

}
class Test {
public static void main(String[] args) {

Point[] pa = new ColoredPoint[4];

pa[0] = new ColoredPoint(2, 2, 12);

pal[l] = new ColoredPoint(4, 5, 24);

ColoredPoint[] cpa = (ColoredPoint[])pa;

System.out.print("cpa: {");

for (int i = 0; i < cpa.length; i++)
System.out.print((i == 07?2 " " : ", ") + cpal[il);

System.out.printin(" }'");

}

This example compiles without errors and produces the output:
cpa: { (2,2)@12, (4,5)@24, null, null }

The following example uses casts to compile, but it throws exceptions at run
time, because the types are incompatible:
public class Point { int x, y; }

public interface Colorable { void setColor(int color); }
public class ColoredPoint extends Point implements Colorable
{

int color;

public void setColor(int color) { this.color = color; }
}
class Test {

public static void main(String[] args) {

Point[] pa = new Point[100];

// Thefollowing line will throw aClassCastException:
ColoredPoint[] cpa = (ColoredPoint[])pa;

System.out.println(cpal0]);

55

107

5.6

108

Numeric Promotions CONVERS ONS AND PROMOTIONS

int[] shortvec = new int[2];

Object o = shortvec;

// Thefollowing line will throw aClassCastException:
Colorable c = (Colorable)o;

c.setColor(0);

5.6 Numeric Promotions

Numeric promotion is applied to the operands of an arithmetic operator. Numeric
promotion contexts allow the use of an identity conversion (85.1.1) a widening
primitive conversion (85.1.2), or an unboxing conversion (85.1.8).

Numeric promotions are used to convert the operands of a numeric operator to
a common type so that an operation can be performed. The two kinds of numeric
promotion are unary numeric promotion (85.6.1) and binary numeric promotion
(85.6.2).

5.6.1 Unary Numeric Promotion

Some operators apply unary numeric promotion to a single operand, which must
produce a value of a numeric type:

* If the operand is of compile-timetypeByte, Short,p Character, or Integer
it is subjected to unboxing conversion. The result is then promoted to a value
of type int by awidening conversion (85.1.2) or an identity conversion.

» Otherwise, if the operand is of compile-timetype Long, Float,pp or Double it
is subjected to unboxing conversion.

» Otherwise, if the operand is of compile-time type byte, short, or char,
unary numeric promotion promotes it to a value of type int by a widening
conversion (85.1.2).

» Otherwise, aunary numeric operand remains asis and is not converted.

In any case, value set conversion (85.1.13) is then applied.

CONVERS ONS AND PROMOTIONS Unary Numeric Promotion

Unary numeric promotion is performed on expressions in the following situa-

tions:

» Each dimension expression in an array creation expression (815.10)

» Theindex expression in an array access expression (815.13)

» The operand of aunary plus operator + (815.15.3)

» The operand of a unary minus operator - (815.15.4)

» The operand of a bitwise complement operator ~ (§15.15.5)

 Each operand, separately, of a shift operator >>, >>>, or << (§15.19); therefore
a Tong shift distance (right operand) does not promote the value being shifted
(Ieft operand) to Tong

Here is atest program that includes examples of unary numeric promotion:
class Test {

public static void main(String[] args) {

byte b = 2;
int a[] = new int[b]; // dimension expression promotion
char ¢ = "\u0001';

afc] = 1; // index expression promotion

a[0] = -c; // unary - promotion
System.out.printin("a: " + a[0] + "," + a[1l]);
b = -1;

int i = ~b; // bitwise complement promotion

System.out.printIn("~0x" + Integer.toHexString(b)
+ "==0x" + Integer.toHexString(i));
i=b << 4L; // shift promotion (left operand)
System.out.printIn("0x" + Integer.toHexString(b)
+ "<<4L==0x" + Integer.toHexString(i));

This test program produces the output:

a:

-1,1

~OXFFFFFFFF==0x0
OXFFFFFFFfe<dL==0xFFFFFFFO

5.6.1

109

56.2

110

Binary Numeric Promotion CONVERSIONS AND PROMOTIONS

5.6.2 Binary Numeric Promotion

When an operator applies binary numeric promotion to a pair of operands, each of
which must denote a value that is convertible to a numeric type, the following
rules apply, in order, using widening conversion (85.1.2) to convert operands as
necessary:

If any of the operands is of a reference type, unboxing conversion (85.1.8) is
performed. Then:

If either operand is of type doub1e, the other is converted to double.

Otherwise, if either operand is of type f1oat, the other is converted to f1oat.

Otherwise, if either operand is of type Tong, the other is converted to Tong.
» Otherwise, both operands are converted to type int.

After the type conversion, if any, value set conversion (85.1.13) is applied to each
operand.
Binary numeric promotion is performed on the operands of certain operators.

» The multiplicative operators *, / and % (815.17)

» The addition and subtraction operators for numeric types+ and - (815.18.2)
* The numerical comparison operators <, <=, >, and >= (815.20.1)

e The numerical equality operators== and != (815.21.1)

» Theinteger bitwise operators &, A, and | (815.22.1)

* |In certain cases, the conditional operator ? : (815.25)

An example of binary numeric promotion appears above in 85.1. Here is
another:

class Test {
public static void main(String[] args) {
int i = 0;
float f = 1.0f;
double d = 2.0;

// Firstint*float ispromoted to float*float, then

// float==double ispromoted to double==doube:
if (P * f==d
System.out.printin("oops");

CONVERS ONS AND PROMOTIONS Binary Numeric Promotion

// A char&byte ispromoted to int&int:
byte b = 0x1f;
char c 'G';
int control = c & b;
System.out.println(Integer.toHexString(control));

// Hereint:float ispromotedto float:float:
f=(b==0) ? i : 4.0f;
System.out.printin(1.0/f);

}

which produces the outpuit:
7
0.25

The example converts the ASCI| character G to the ASCII control-G (BEL), by
masking off all but the low 5 bits of the character. The 7 is the numeric value of
this control character.

5.6.2

111

5.6.2 Binary Numeric Promotion CONVERSIONS AND PROMOTIONS

112

CHAPTER 6

Names

NAMES are used to refer to entities declared in a program. A declared entity
(86.1) is apackage, classtype (normal or enum), interface type (normal or annota-
tion type), member (class, interface, field, or method) of a reference type, type
parameter (of a class, interface, method or constructor) (84.4), parameter (to a
method, constructor, or exception handler), or local variable.

Names in programs are either simple, consisting of a single identifier, or
qualified, consisting of a sequence of identifiers separated by “ .” tokens (86.2).

Every declaration that introduces a name has a scope (86.3), which is the part
of the program text within which the declared entity can be referred to by asimple
name.

Packages and reference types (that is, class types, interface types, and array
types) have members (86.4). A member can be referred to using a qualified name
N.x, where N is a simple or qualified name and x is an identifier. If N names a
package, then x is a member of that package, which is either a class or interface
type or asubpackage. If N names areference type or avariable of areferencetype,
then x names a member of that type, which is either aclass, an interface, afield, or
amethod.

In determining the meaning of a name (86.5), the context of the occurrence is
used to disambiguate among packages, types, variables, and methods with the
same name.

Access control (86.6) can be specified in a class, interface, method, or field
declaration to control when access to a member is allowed. Access is a different
concept from scope; access specifies the part of the program text within which the
declared entity can be referred to by a qualified name, a field access expression

113

6.1

114

Declarations NAMES

(815.11), or a method invocation expression (815.12) in which the method is not
specified by a simple name. The default access is that a member can be accessed
anywhere within the package that contains its declaration; other possibilities are
public, protected, and private.

Fully qualified and canonical names (86.7) and naming conventions (86.8) are
also discussed in this chapter.

The name of afield, parameter, or local variable may be used as an expression
(815.14.2). The name of a method may appear in an expression only as part of a
method invocation expression (815.12). The name of a class or interface type may
appear in an expression only as part of a class literal (815.8.2), a qualified this
expression (815.8.4), a class instance creation expression (815.9), an array cre-
ation expression (815.10), a cast expression (815.16), an instanceof expression
(815.20.2), an enum constant (88.9), or as part of a qualified name for afield or
method. The name of a package may appear in an expression only as part of a
gualified name for a class or interface type.

6.1 Declarations

A declaration introduces an entity into a program and includes an identifier (83.8)
that can be used in anameto refer to thisentity. A declared entity is one of the fol-
lowing:

A package, declared in a package declaration (87.4)

» An imported type, declared in a single-type-import declaration (87.5.1) or a
type-import-on-demand declaration (8§7.5.2)

A class, declared in a class type declaration (88.1)
» Aninterface, declared in an interface type declaration (89.1)

* A type variable (84.4), declared as a formal type parameter of a generic class
(88.1.2), interface (89.1.2), method (88.4.4) or constructor (88.8.1).

» A member of areferencetype (88.2, §9.2, 810.7), one of the following:
o A member class (88.5, 89.5).
o A member interface (88.5, §9.5).
o an enum constant (88.9).
o A field, one of the following:
o A field declared in a class type (88.3)

NAMES Names and Identifiers

o A constant field declared in an interface type (89.3)

o The field Tength, which is implicitly a member of every array type
(810.7)

o A method, one of the following:
o A method (abstract or otherwise) declared in a class type (88.4)
o A method (always abstract) declared in an interface type (89.4)
» A parameter, one of the following:
o A parameter of amethod or constructor of aclass (88.4.1, §8.8.1)
o A parameter of an abstract method of an interface (89.4)

o A parameter of an exception handler declared in a catch clause of a try
statement (814.20)

» A local variable, one of the following:
o A local variable declared in ablock (814.4)
o A local variable declared in a for statement (814.14)

Constructors (88.8) are also introduced by declarations, but use the name of the
classin which they are declared rather than introducing a new name.

6.2 Namesand ldentifiers

A name is used to refer to an entity declared in a program.

There are two forms of names. simple names and qualified names. A simple
name is asingle identifier. A qualified name consists of a name, a“.” token, and
an identifier.

In determining the meaning of a name (86.5), the context in which the name
appearsis taken into account. The rules of 86.5 distinguish among contexts where
a name must denote (refer to) a package (86.5.3), a type (86.5.5), a variable or
value in an expression (86.5.6), or amethod (86.5.7).

Not all identifiersin programs are apart of aname. Identifiers are also used in
the following situations:

6.2

115

6.2

116

Names and Identifiers NAMES

* In declarations (86.1), where an identifier may occur to specify the name by
which the declared entity will be known

* In field access expressions (815.11), where an identifier occurs after a “.
token to indicate a member of an object that is the value of an expression or
the keyword super that appears before the* .” token

* In some method invocation expressions (815.12), where an identifier may
occur after a “.” token and before a “ (" token to indicate a method to be
invoked for an object that is the value of an expression or the keyword super

that appears beforethe “ .” token

» In qualified class instance creation expressions (815.9), where an identifier
occurs immediately to the right of the leftmost new token to indicate a type
that must be a member of the compile-time type of the primary expression

preceding the* .” preceding the leftmost new token.

» Aslabelsin labeled statements (814.7) and in break (814.15) and continue
(814.16) statements that refer to statement labels.

In the example:
class Test {

public static void main(String[] args) {
Class ¢ = System.out.getClass(Q);
System.out.println(c.toString().length() +
args[0].1length() + args.length);
}

3
the identifiers Test, main, and the first occurrences of args and c are not names;

rather, they are used in declarations to specify the names of the declared entities.
The names String, Class, System.out.getClass, System.out.println,
c.toString, args, and args.length appear in the example. The first occur-
rence of Tength isnot aname, but rather an identifier appearing in amethod invo-
cation expression (815.12). The second occurrence of Tength is not a name, but
rather an identifier appearing in a method invocation expression (815.12).

The identifiers used in labeled statements and their associated break and
continue statements are completely separate from those used in declarations.
Thus, the following code is valid:

class TestString {

char[] value;
int offset, count;

int indexOf(TestString str, int fromIndex) {
char[] vl = value, v2 = str.value;
int max = offset + (count - str.count);

NAMES Scope of a Declaration

int start = offset + ((fromIndex < 0) ? 0 : fromIndex);

for (int i = start; i <= max; i++)

{
int n = str.count, j = i, k = str.offset;
while (n-- !'= 0) {
if (vi[j++] !'= v2[k++])
continue 1i;
}
return i - offset;
}
return -1;

}
}

This code was taken from a version of the class String and its method i ndexOf,
where the label was originaly called test. Changing the label to have the same
name as the local variable i does not obscure (86.3.2) the labd in the scope of the
declaration of i. The identifier max could also have been used as the statement
label; the label would not obscure the local variable max within the labeled state-
ment.

6.3 Scope of a Declaration

The scope of a declaration is the region of the program within which the entity
declared by the declaration can be referred to using a simple name (provided it is
visible (86.3.1)). A declaration is said to be in scope at a particular point in a pro-
gram if and only if the declaration’s scope includes that point.

The scoping rules for various constructs are given in the sections that describe
those constructs. For convenience, the rules are repeated here:

The scope of the declaration of an observable (87.4.3) top level package is all
observable compilation units (87.3). The declaration of a package that is not
observable is never in scope. Subpackage declarations are never in scope.

The scope of atype imported by a single-type-import declaration (87.5.1) or a
type-import-on-demand declaration (87.5.2) isall the class and interface type dec-
larations (87.6) in the compilation unit in which the import declaration appears.

The scope of a member imported by a single-static-import declaration
(87.5.3) or a static-import-on-demand declaration (87.5.4) is al the class and
interface type declarations (§7.6) in the compilation unit in which the import dec-
laration appears.

The scope of atop level type is al type declarations in the package in which
the top level typeis declared.

6.3

117

6.3

118

Scope of a Declaration NAMES

The scope of a declaration of a member m declared in or inherited by a class
type C isthe entire body of c, including any nested type declarations.

The scope of the declaration of a member m declared in or inherited by an
interface type 1 isthe entire body of 1, including any nested type declarations.

The scope of a parameter of a method (88.4.1) or constructor (88.8.1) is the
entire body of the method or constructor.

The scope of an interface’s type parameter is the entire declaration of the
interface including the type parameter section itself. Therefore, type parameters
can appear as parts of their own bounds, or as bounds of other type parameters
declared in the same section.

The scope of a method's type parameter is the entire declaration of the
method, including the type parameter section itself. Therefore, type parameters
can appear as parts of their own bounds, or as bounds of other type parameters
declared in the same section.

The scope of a constructor’s type parameter is the entire declaration of the
constructor, including the type parameter section itself. Therefore, type parame-
ters can appear as parts of their own bounds, or as bounds of other type parameters
declared in the same section.

The scope of alocal variable declaration in ablock (814.4.2) isthe rest of the
block in which the declaration appears, starting with its own initializer (§14.4) and
including any further declaratorsto the right in the local variable declaration state-
ment.

The scope of alocal class immediately enclosed by a block (814.2) isthe rest
of theimmediately enclosing block, including its own class declaration. The scope
of a local class immediately enclosed by in a switch block statement group
(814.11)is the rest of the immediately enclosing switch block statement group,
including its own class declaration.

The scope of alocal variable declared in the Forlnit part of abasic for state-
ment (814.14) includes all of the following:

* Itsowninitiaizer
» Any further declaratorsto the right in the ForInit part of the for statement
» The Expression and ForUpdate parts of the for statement

* The contained Satement

The scope of a local variable declared in the FormalParameter part of an
enhanced for statement (814.14) is the contained Statement

The scope of a parameter of an exception handler that is declared in a catch
clause of a try statement (814.20) isthe entire block associated with the catch.

NAMES Shadowing Declarations

These rules imply that declarations of class and interface types need not
appear before uses of the types.

In the example:

package points;

class Point {

int x, y;
PointList Tist;
Point next;
}
class PointList {
Point first;
3
theuse of PointList in class Point is correct, because the scope of the class
declaration PointL1ist includes both class Point and class PointList, as well
as any other type declarations in other compilation units of package points.

6.3.1 Shadowing Declarations

Some declarations may be shadowed in part of their scope by another declaration
of the same name, in which case a simple name cannot be used to refer to the
declared entity.

A declaration d of atype named n shadows the declarations of any other types
named n that are in scope at the point where d occurs throughout the scope of d.

A declaration d of a field, local variable, method parameter, constructor
parameter or exception handler parameter named n shadows the declarations of
any other fields, local variables, method parameters, constructor parameters or
exception handler parameters named n that are in scope at the point where d
occurs throughout the scope of d.

A declaration d of a method named n shadows the declarations of any other
methods named n that are in an enclosing scope at the point where d occurs
throughout the scope of d.

A package declaration never shadows any other declaration.

A single-type-import declaration d in a compilation unit ¢ of package p that
imports atype named n shadows the declarations of:

 any top level type named n declared in another compilation unit of p.
* any type named n imported by atype-import-on-demand declarationin c.

* any type named n imported by a static-import-on-demand declaration in c.

throughout c.

6.3.1

119

6.3.1

120

Shadowing Declarations NAMES

A single-static-import declaration d in a compilation unit ¢ of package p that
imports a field named n shadows the declaration of any static field named n
imported by a static-import-on-demand declaration in c, throughout c.

A single-static-import declaration d in a compilation unit ¢ of package p that
imports a method named n with signature s shadows the declaration of any static
method named n with signature s imported by a static-import-on-demand decla-
rationin c, throughout c.

A single-static-import declaration d in a compilation unit ¢ of package p that
imports atype named n shadows the declarations of :

 any static type named n imported by a static-import-on-demand declaration in
C.

 any top level type (87.6) named n declared in another compilation unit (87.3)
of p.

 any type named n imported by a type-import-on-demand declaration (87.5.2)
inc.

throughout c.

A type-import-on-demand declaration never causes any other declaration to
be shadowed.

A static-import-on-demand declaration never causes any other declaration to
be shadowed.

A declaration d is said to be visible at point p in a program if the scope of d
includes p, and d is not shadowed by any other declaration at p. When the program
point we are discussing is clear from context, we will often simply say that a dec-
laration isvisible.

Note that shadowing is distinct from hiding (88.3, §8.4.8.2, §8.5, §9.3, 89.5).
Hiding, in the technical sense defined in this specification, applies only to mem-
bers which would otherwise be inherited but are not because of a declaration in a
subclass. Shadowing is aso distinct from obscuring (86.3.2).

Here is an example of shadowing of afield declaration by alocal variable dec-
laration:

class Test {

static int x = 1;

public static void main(String[] args) {
int x = 0;
System.out.print("x=" + x);

System.out.printin(", Test.x='
}

+ Test.x);

}

produces the output:

NAMES Shadowing Declarations 6.3.1

x=0, Test.x=1
This example declares:

eaclassTest

e aclass (static) variable x that isamember of the class Test
* aclass method main that is a member of the class Test

* a parameter args of the main method.

e alocal variable x of the main method

Since the scope of a class variable includes the entire body of the class (88.2)
the class variable x would normally be available throughout the entire body of the
method main. In this example, however, the class variable x is shadowed within
the body of the method main by the declaration of the local variable x.

A local variable has as its scope the rest of the block in which it is declared
(814.4.2); in this case this is the rest of the body of the main method, namely its
initializer “0” and the invocations of print and printin.

This means that:

» The expression “x” in the invocation of print refersto (denotes) the value of
the local variable x.

» The invocation of println uses a qualified name (86.6) Test.x, which uses
the class type name Test to access the class variable x, because the declara-
tion of Test.x is shadowed at this point and cannot be referred to by its sim-
ple name.

The following example illustrates the shadowing of one type declaration by
another:
import java.util.*;
class Vector {
int val[l = {1, 2 };

class Test {
public static void main(String[] args) {
Vector v = new Vector();
System.out.printin(v.val[0]);

}
}
compiles and prints:
1

using the class Vector declared here in preference to the generic (88.1.2) class
java.util.Vector that might be imported on demand.

121

6.3.2

122

Obscured Declarations NAMES

6.3.2 Obscured Declarations

A simple name may occur in contexts where it may potentially be interpreted as
the name of a variable, atype or a package. In these situations, the rules of 86.5
specify that a variable will be chosen in preference to atype, and that a type will
be chosen in preference to a package. Thus, it is may sometimes be impossible to
refer to avisible type or package declaration viaits simple name. We say that such
adeclaration is obscured.

Obscuring is distinct from shadowing (86.3.1) and hiding (88.3, §8.4.8.2,
88.5, §9.3, §9.5). The naming conventions of 86.8 help reduce obscuring.

6.4 Membersand Inheritance

Packages and reference types have members.

This section provides an overview of the members of packages and reference
types here, as background for the discussion of qualified names and the determi-
nation of the meaning of names. For a complete description of membership, see
84.4,84.5.2,84.8,84.9, 8§7.1, 88.2, 89.2, and §10.7.

6.4.1 TheMembersof Type Variables, Parameterized Types, Raw Types
and | ntersection Types

The members of atype variable were specified in 8§4.4, the members of a parame-
terized typein 84.5.2, those of araw typein 84.8, and the members of an intersec-
tion type were specified in §4.9.

6.4.2 The Members of a Package

The members of a package (87) are specified in §7.1. For convenience, we repeat
that specification here:

The members of a package are its subpackages and all the top level (87.6)
class types (88) and top level interface types (89) declared in al the compilation
units (87.3) of the package.

In general, the subpackages of a package are determined by the host system
(87.2). However, the package java always includes the subpackages 1ang and io
and may include other subpackages. No two distinct members of the same pack-
age may have the same simple name (87.1), but members of different packages
may have the same simple name.

NAMES The Members of a Class Type

For example, it is possible to declare a package:

package vector;

public class Vector { Object[] vec; }
that has as a member a pub1ic class named Vector, even though the package
java.util aso declares a class named Vector. These two class types are differ-
ent, reflected by the fact that they have different fully qualified names (86.7). The
fully quaified name of this example Vector is vector.Vector, whereas
java.util.Vector is the fully qualified name of the Vector class usualy
included in the Java platform. Because the package vector contains a class
named Vector, it cannot also have a subpackage named Vector.

6.4.3 The Membersof aClass Type

The members of aclasstype (88.2) are classes (88.5, 89.5), interfaces (88.5, §9.5),
fields (88.3, §89.3, 810.7), and methods (88.4, §89.4). Members are either declared
in the type, or inherited because they are accessible members of a superclass or
superinterface which are neither private nor hidden nor overridden (88.4.8).

The members of aclasstype are al of the following:

» Members inherited from its direct superclass (88.1.4), if it has one (the class
Object has no direct superclass)

» Membersinherited from any direct superinterfaces (88.1.5)

Members declared in the body of the class (88.1.6)
Constructors (88.8) and type variables (84.4) are not members.

There is no restriction against afield and a method of a class type having the
same simple name. Likewise, there is no restriction against a member class or
member interface of a class type having the same simple name as a field or
method of that classtype.

A class may have two or more fields with the same simple name if they are
declared in different interfaces and inherited. An attempt to refer to any of the
fields by its simple name results in a compile-time error (86.5.7.2, §8.2).

In the example:

interface Colors {
int WHITE = 0, BLACK = 1;
}

interface Separates {
int CYAN = 0, MAGENTA = 1, YELLOW = 2, BLACK = 3;
3

6.4.3

123

6.4.4

124

The Members of an Interface Type NAMES

class Test implements Colors, Separates {

public static void main(String[] args) {
System.out.printIn(BLACK); // compile-time error: ambiguous
}

}
the name BLACK in the method main is ambiguous, because class Test has two
members named BLACK, one inherited from Colors and one from Separates.

A class type may have two or more methods with the same simple nameif the
methods have signatures that are not override-equivalent (88.4.2). Such a method
member name is said to be overloaded.

A class type may contain a declaration for a method with the same name and
the same signature as a method that would otherwise be inherited from a super-
class or superinterface. In this case, the method of the superclass or superinterface
is not inherited. If the method not inherited is abstract, then the new declaration
is said to implement it; if the method not inherited is not abstract, then the new
declaration is said to overrideit.

In the example:

class Point {

float x, y;
void move(int dx, int dy) { x += dx; y += dy; }
void move(float dx, float dy) { x += dx; y += dy; }

public String toString() { return "("+x+","+y+")"; }

}
the class Point has two members that are methods with the same name, move.
The overloaded move method of class Point chosen for any particular method
invocation is determined at compile time by the overloading resolution procedure
givenin 815.12.

In this example, the members of the class Point are the float instance vari-
ables x and y declared in Point, the two declared move methods, the declared
toString method, and the members that Point inherits from its implicit direct
superclass Object (84.3.2), such as the method hashCode. Note that Point does
not inherit the toString method of class Object because that method is overrid-
den by the declaration of the toString method in class Point.

6.4.4 TheMembersof an Interface Type

The members of an interface type (89.2) may be classes (88.5, §9.5), interfaces
(88.5, 89.5), fields (88.3, §9.3, §10.7), and methods (88.4, §9.4). The members of
an interface are:

* Those members declared in the interface.

» Those membersinherited from direct superinterfaces.

NAMES The Members of an Array Type

 If an interface has no direct superinterfaces, then the interface implicitly
declares a public abstract member method m with signature s, return type r,
and throws clause t corresponding to each public instance method m with sig-
nature s, return type r, and throws clause t declared in Object, unless a
method with the same signature, same return type, and a compatible throws
clause is explicitly declared by the interface. It is a compile-time error if the
interface explicitly declares such amethod m in the case wherem is declared to
be final inObject.

Type variables (84.4) are not members.

An interface may have two or more fields with the same simple name if they
are declared in different interfaces and inherited. An attempt to refer to any such
field by its simple name results in a compile-time error (86.5.6.1, §9.2).

In the example:

interface Colors {

int WHITE = 0, BLACK = 1;
}
interface Separates {
int CYAN = 0, MAGENTA = 1, YELLOW = 2, BLACK = 3;
3
interface ColorsAndSeparates extends Colors, Separates {
int DEFAULT = BLACK; // compile-time error: ambiguous
}
the members of the interface ColorsAndSeparates include those members
inherited from Colors and those inherited from Separates, namely WHITE,
BLACK (first of two), CYAN, MAGENTA, YELLOW, and BLACK (second of two). The
member name BLACK is ambiguous in the interface ColorsAndSeparates.

6.4.5 TheMembersof an Array Type

The members of an array type are specified in 810.7. For convenience, we repeat
that specification here.
The members of an array type are all of the following:

* The public final field Tength, which contains the number of components
of the array (1Tength may be positive or zero).

* The pub1ic method c1one, which overrides the method of the same namein
class Object and throws no checked exceptions. The return type of the clone
method of an array type T[] isT[]-

 All the membersinherited from class Object; the only method of Object that
is not inherited isits c1one method.

6.4.5

125

6.5

126

Determining the Meaning of a Name NAMES

The example:
class Test {
public static void main(String[] args) {
int[] ia = new int[3];
int[] ib = new int[6];
System.out.printin(ia.getClass() == ib.getClass());
System.out.printin("ia has length=" + ia.length);
}
}
produces the output:
true
ia has Tlength=3
This example uses the method getClass inherited from class Object and the
field Tength. The result of the comparison of the Class objects in the first
println demonstrates that all arrays whose components are of type int are
instances of the same array type, whichisint[].

6.5 Determining the Meaning of a Name

The meaning of a name depends on the context in which it is used. The determina-
tion of the meaning of a name requires three steps. First, context causes a name
syntactically to fall into one of six categories: PackageName, TypeName, Expres-
sionName, MethodName, PackageOrTypeName, or AmbiguousName. Second, a
name that isinitialy classified by its context as an AmbiguousName or as a Pack-
ageOrTypeName is then reclassified to be a PackageName, TypeName, or Expres-
sionName. Third, the resulting category then dictates the final determination of
the meaning of the name (or a compilation error if the name has no meaning).

PackageName:
Identifier
PackageName . ldentifier

TypeName:
I dentifier
PackageOrTypeName . ldentifier

ExpressionName:
Identifier
AmbiguousName . Identifier

NAMES Syntactic Classification of a Name According to Context
MethodName:
Identifier
AmbiguousName . Identifier
PackageOr TypeName:
Identifier

PackageOrTypeName . Identifier

AmbiguousName:
Identifier
AmbiguousName . Identifier

The use of context helps to minimize name conflicts between entities of dif-
ferent kinds. Such conflicts will be rare if the naming conventions described in
86.8 are followed. Nevertheless, conflicts may arise unintentionally as types
developed by different programmers or different organizations evolve. For exam-
ple, types, methods, and fields may have the same name. It is always possible to
distinguish between a method and afield with the same name, since the context of
ause always tells whether a method is intended.

6.5.1 Syntactic Classification of a Name According to Context

A nameis syntactically classified as a PackageName in these contexts:
* In apackage declaration (87.4)
» Totheleft of the“.” in aqualified PackageName

A nameis syntactically classified as a TypeName in these contexts:
 Inasingle-type-import declaration (§7.5.1)
» Totheleft of the"." in asingle static import (87.5.3) declaration
» Totheleft of the"." in a static import-on-demand (87.5.4) declaration
» Totheleft of the"<" in a parameterized type (84.5)
* Inan actua type argument list of a parameterized type

 In an explicit actual type argument list in a generic method (88.4.4) or con-
structor (88.8.4) invocation

* Inan extends clause in atype variable declaration (88.1.2)
* Inan extends clause of awildcard type argument (84.5.1)
* Inasuper clause of awildcard type argument (84.5.1)

6.5.1

127

6.5.1 9Yyntactic Classification of a Name According to Context NAMES

* Inan extends clausein aclass declaration (88.1.4)

e Inanimplements clausein aclass declaration (88.1.5)
* Inan extends clause in an interface declaration (89.1.3)
» After the"@" signin an annotation (89.7)

» AsaType (or the part of a Type that remains after al brackets are deleted) in
any of the following contexts:

o Inafield declaration (88.3, §89.3)
o Astheresult type of a method (§88.4, §9.4)

o As the type of a forma parameter of a method or constructor (88.4.1,
88.8.1, 89.4)

o As the type of an exception that can be thrown by a method or constructor
(88.4.6, 88.8.5, §9.4)

o Asthetype of alocal variable (814.4)

o Asthe type of an exception parameter in a catch clause of a try statement
(814.20)

o Asthetypein aclassliteral (815.8.2)
o Asthe qualifying type of aqualified this expression (§815.8.4).

o Asthe class type which is to be instantiated in an unqualified class instance
creation expression (815.9)

o As the direct superclass or direct superinterface of an anonymous class
(815.9.5) whichisto beinstantiated in an unqualified class instance creation
expression (815.9)

o Asthe element type of an array to be created in an array creation expression
(815.10)

o Asthe qualifying type of field access using the keyword super (815.11.2)

o As the quaifying type of a method invocation using the keyword super
(815.12)

o Asthe type mentioned in the cast operator of a cast expression (815.16)
o Asthetype that follows the instanceof relational operator (815.20.2)

128

NAMES Reclassification of Contextually Ambiguous Names

A nameis syntactically classified as an ExpressionName in these contexts:

» Asthe qualifying expression in a qualified superclass constructor invocation
(88.8.7.1)

» Asthe qualifying expression in a qualified class instance creation expression
(815.9)

» Asthe array reference expression in an array access expression (815.13)
+ Asa PostfixExpression (§15.14)
 Astheleft-hand operand of an assignment operator (815.26)

A nameis syntactically classified as a MethodName in these contexts:
» Beforethe® (" in amethod invocation expression (815.12)

» Totheleft of the"=" sign in an annotation’s element value pair (89.7)

A nameis syntactically classified as a PackageOr TypeName in these contexts:
» Totheleft of the“.” in aqualified TypeName
* In atype-import-on-demand declaration (87.5.2)

A nameis syntactically classified as an AmbiguousName in these contexts:
» Totheleft of the”.” in aqualified ExpressionName

To theleft of the“.” in aqualified MethodName

To thel€eft of the“.” in aqualified AmbiguousName

In the default value clause of an annotation type element declaration (89.6)

To theright of an "="in an an element value pair (89.7)

6.5.2 Reclassification of Contextually Ambiguous Names

An AmbiguousName is then reclassified as follows:
* If the AmbiguousName is a simple name, consisting of a single Identifier:

o If the Identifier appears within the scope (86.3) of alocal variable declara-
tion (814.4) or parameter declaration (88.4.1, §8.8.1, §14.20) or field decla-
ration (88.3) with that name, then the AmbiguousName is reclassified as an
ExpressionName.

6.5.2

129

6.5.2 Reclassification of Contextually Ambiguous Names NAMES

o Otherwise, if afield of that name is declared in the compilation unit (87.3)
containing the Identifier by a single-static-import declaration (87.5.3), or by
a static-import-on-demand declaration (87.5.4) then the AmbiguousName is
reclassified as an ExpressionName.

o Otherwise, if the Identifier appears within the scope (86.3) of a top level
class (88) or interface type declaration (89), alocal class declaration (§14.3)
or member type declaration (88.5, 89.5) with that name, then the Ambiguou-
sNameis reclassified as a TypeName.

o Otherwise, if atype of that name is declared in the compilation unit (87.3)
containing the Identifier, either by a single-type-import declaration (87.5.1),
or by a type-import-on-demand declaration (87.5.2), or by a single-static-
import declaration (87.5.3), or by a static-import-on-demand declaration
(87.5.4), then the AmbiguousName is reclassified as a TypeName.

o Otherwise, the AmbiguousName is reclassified as a PackageName. A later
step determines whether or not a package of that name actually exists.

« If the AmbiguousName is aqualified name, consisting of aname, a“.”, and an
Identifier, then the name to the left of the“ .” isfirst reclassified, for it isitself
an AmbiguousName. There is then a choice:

o If the name to the left of the “.” is reclassified as a PackageName, then if
there is a package whose name is the name to the left of the “.” and that
package contains a declaration of a type whose name is the same as the
Identifier, then this AmbiguousName is reclassified as a TypeName. Other-
wise, this AmbiguousName is reclassified as a PackageName. A later step
determines whether or not a package of that name actually exists.

o If the name to the left of the “.” is reclassified as a TypeName, then if the
Identifier isthe name of amethod or field of the type denoted by TypeName,
this AmbiguousName is reclassified as an ExpressionName. Otherwise, if
the Identifier is the name of a member type of the type denoted by Type-
Name, this AmbiguousName is reclassified as a TypeName. Otherwise, a
compile-time error results.

o If the name to the left of the “.” is reclassified as an ExpressionName, then
let T be the type of the expression denoted by ExpressionName. If the Iden-
tifier isthe name of amethod or field of the type denoted by T, this Ambigu-
ousName is reclassified as an ExpressionName. Otherwise, if the Identifier
is the name of a member type (88.5, §9.5) of the type denoted by T, then this
AmbiguousName is reclassified as a TypeName. Otherwise, a compile-time
error results.

130

NAMES Meaning of Package Names

As an example, consider the following contrived “library code’:

package org.rpgpoet;

import java.util.Random;

interface Music { Random[] wizards = new Random[4]; }
and then consider this example code in another package:

package bazola;

class Gabriel {

static int n = org.rpgpoet.Music.wizards.length;

3
First of all, the name org. rpgpoet.Music.wizards.length is classified as an
ExpressionName because it functions as a PostfixExpression. Therefore, each of
the names:

org.rpgpoet.Music.wizards

org.rpgpoet.Music
org.rpgpoet
org

isinitialy classified as an AmbiguousName. These are then reclassified:

» The simple name org isreclassified as a PackageName (since there is no vari-
able or type named org in scope).

 Next, assuming that there is no class or interface named rpgpoet in any com-
pilation unit of package org (and we know that there is no such class or inter-
face because package org has a subpackage named rpgpoet), the qualified
nameorg. rpgpoet is reclassified as a PackageName.

* Next, because package org. rpgpoet has an interface type named Music, the
qualified name org. rpgpoet.Music isreclassified as a TypeName.

* Finaly, because the name org. rpgpoet.Music is a TypeName, the qualified
nameorg.rpgpoet.Music.wizards isreclassified as an ExpressionName.

6.5.3 Meaning of Package Names

The meaning of aname classified as a PackageName is determined as follows.

6.5.3.1 Smple Package Names

If a package name consists of a single Identifier, then this identifier denotes atop
level package named by that identifier. If no top level package of that nameisin
scope (87.4.4), then a compile-time error occurs.

6.5.3

131

6.54

132

Meaning of PackageOr TypeNames NAMES

6.5.3.2 Qualified Package Names

If a package nameis of theform Q. 1d, then Q must also be a package name. The
package name Q. Id names a package that is the member named 1d within the
package named by Q. If Q does not name an observable package (87.4.3), or Id is
not the simple name an observable subpackage of that package, then a compile-
time error occurs.

6.5.4 Meaning of PackageOrTypeNames

6.5.4.1 Smple PackageOr TypeNames

If the PackageOr TypeName, Q, occurs in the scope of a type named Q, then the
PackageOr TypeName is reclassified as a TypeName.

Otherwise, the PackageOrTypeName is reclassified as a PackageName. The
meaning of the PackageOr TypeName is the meaning of the reclassified name.

6.5.4.2 Qualified PackageOr TypeNames

Given a qualified PackageOrTypeName of the form Q. I1d, if the type or package
denoted by Q has a member type named Id, then the qualified PackageOr Type-
Name nameis reclassified as a TypeName.

Otherwisg, it is reclassified as a PackageName. The meaning of the qualified
PackageOr TypeName is the meaning of the reclassified name.

6.5.5 Meaning of Type Names

The meaning of a name classified as a TypeName is determined as follows.

6.5.5.1 Smple Type Names

If atype name consists of a single Identifier, then the identifier must occur in the
scope of exactly one visible declaration of a type with this name, or a compile-
time error occurs. The meaning of the type nameisthat type.

6.5.5.2 Qualified Type Names

If atype nameisof theform Q. 1d, then Q must be either atype name or a package
name. If 1d names exactly one type that is a member of the type or package
denoted by Q, then the qualified type name denotes that type. If 1d does not name
amember type (88.5, §9.5) within Q, or the member type named Id within Q is not

NAMES Meaning of TypeNames 6.5.5

accessible (86.6), or 1d names more than one member type within Q, then a com-
pile-time error occurs.

The example:

package wnj.test;

class Test {

public static void main(String[] args) {
java.util.Date date =
new java.util.Date(System.currentTimeMillis());
System.out.println(date.toLocaleString());

}
}
produced the following output the first time it was run:
Sun Jan 21 22:56:29 1996
In this example the name java.util.Date must denote atype, so we first use the
procedure recursively to determine if java.util isan accessible type or a pack-
age, whichitis, and then look to seeif the type Date is accessible in this package.

DiscussioN

Type names are distinct from type declaration specifiers (84.3). A type name is always
qualified by meas of another type name. In some cases, it is necessary to access an inner
class that is a member of a parameterized type:
class GenericOuter<T extends Number> {
pubTlic class Inner<S extends Comparable<S>> {
T getT() { return null;}
S getSQ { return null;}
}
s
GenericOuter<Integer>.Inner<Double> x1 = null;
Integer i = x1.getTQ;
Double d = x1.getSQ);

If we accessed Inner by qualifying it with a type name, as in:
GenericOuter.Inner x2 = null;
we would force its use as a raw type, losing type information.

133

6.5.6

134

Meaning of Expression Names NAMES

6.5.6 Meaning of Expression Names

The meaning of a name classified as an ExpressionName is determined as follows.

6.5.6.1 Smple Expression Names

If an expression name consists of a single Identifier, then there must be exactly
one visible declaration denoting either alocal variable, parameter or field in scope
at the point at which the the Identifier occurs. Otherwise, a compile-time error
OCCuUrs.

If the declaration declares afinal field, the meaning of the name isthe value of
that field. Otherwise, the meaning of the expression name is the variable declared
by the declaration.

If the field is an instance variable (88.3), the expression name must appear
within the declaration of an instance method (88.4), constructor (88.8), instance
initializer (88.6), or instance variable initializer (88.3.2.2). If it appears within a
static method (88.4.3.2), static initializer (88.7), or initializer for astatic vari-
able (88.3.2.1, 812.4.2), then a compile-time error occurs.

The type of the expression name is the declared type of the field, local vari-
able or parameter after capture conversion (85.1.10).

In the example:
class Test {
static int v;
static final int f = 3;
public static void main(String[] args) {

int 1i;

i=1;

vV = 2;

f = 33; // compile-time error
System.out.printin(i + " " + v + " " + f);

}
}

the names used as the left-hand-sides in the assignments to 1, v, and f denote the
local variable 1, the field v, and the value of f (not the variable f, because f isa
final variable). The example therefore produces an error at compile time because
the last assignment does not have a variable as its left-hand side. If the erroneous
assignment is removed, the modified code can be compiled and it will produce the
output:

123

NAMES Meaning of Expression Names

6.5.6.2 Qualified Expression Names

If an expression nameis of theform Q.. 1d, then Q has already been classified asa
package hame, a type name, or an expression name:

« If Q isapackage name, then a compile-time error occurs.
* If Q isatype name that names a class type (88), then:

o If thereis not exactly one accessible (86.6) member of the class type that is
afield named 1d, then a compile-time error occurs.

o Otherwise, if the single accessible member field is not a class variable (that
is, it isnot declared static), then a compile-time error occurs.

o Otherwise, if the class variable is declared final, then Q. 1d denotes the
value of the class variable. The type of the expression Q. 1d is the declared
type of the class variable after capture conversion (85.1.10). If Q.1Id
appearsin a context that requires a variable and not a value, then a compile-
time error occurs.

o Otherwise, Q.1d denotes the class variable. The type of the expression
Q.1d is the declared type of the class variable after capture conversion
(85.1.10). Note that this clause covers the use of enum constants (88.9),
since these always have a corresponding final class variable.

« If Q isatype name that names an interface type (89), then:

o If there is not exactly one accessible (86.6) member of the interface type
that isafield named 1d, then a compile-time error occurs.

o Otherwise, Q. 1d denotes the value of the field. The type of the expression
Q. 1d isthe declared type of the field after capture conversion (85.1.10). If
Q. Id appears in a context that requires a variable and not a value, then a
compile-time error occurs.

 If Q isan expression name, let T be the type of the expression Q:
o If T isnot areference type, a compile-time error occurs.

o If there is not exactly one accessible (86.6) member of the type T that isa
field named 1d, then a compile-time error occurs.

o Otherwise, if thisfield is any of the following:
o A field of an interface type

o A final field of a class type (which may be either a class variable or an
instance variable)

6.5.6

135

6.5.6 Meaning of Expression Names NAMES

o The final field Tength of an array type

then Q.. 1d denotes the value of the field. The type of the expression Q. Id is
the declared type of the field after capture conversion (85.1.10). If Q. Id
appearsin acontext that requires a variable and not a value, then a compile-
time error occurs.

o Otherwise, Q. 1d denotes a variable, the field 1d of class T, which may be
either a class variable or an instance variable. The type of the expression
Q. Id isthe type of the field member after capture conversion (85.1.10).

The example:
class Point {
int x, y;
static int nPoints;
b
class Test {
public static void main(String[] args) {

int 1 = 0;
1. X++; // compile-time error
Point p = new Point();

p.nPointsQ); // compile-time error

}
}
encounters two compile-time errors, because the int variable i has no members,

and because nPoints is not amethod of class Point.

DiscussioN

Note that expression names may be qualified by type names, but not by types in general. A
consequence is that it is not possible to access a class variable through a parameterized
type
class Foo<T> {
pubTlic static int classVar = 42;

b
Foo<String>.classVar = 91; // illegal

Instead, one writes

Foo.classVar = 91;

This does not restrict the language in any meaningful way. Type parameters may not
be used in the types of static variables, and so the actual parameters of a parameterized
type can never influence the type of a static variable. Therefore, no expressive power is

136

NAMES Meaning of Method Names ~ 6.5.7

lost. Technically, the type name Foo above is a raw type, but this use of raw types is harm-
less, and does not give rise to warnings

6.5.7 Meaning of Method Names

A MethodName can appear only in a method invocation expression (815.12) or as
an element name in an element-value pair (89.7). The meaning of a name classi-
fied as a MethodName is determined as follows.

6.5.7.1 Smple Method Names

A simple method name may appear as the element name in an element-value
pair. The Identifier in an ElementValuePair must be the simple name of one of the
elements of the annotation type identified by TypeName in the containing annota-
tion. Otherwise, a compile-time error occurs. (In other words, the identifier in an
element-value pair must also be amethod name in the interface identified by Type-
Name.)

Otherwise, a simple method name necessarily appears in the context of a
method invocation expression. In that case, if a method name consists of a single
Identifier, then Identifier is the method name to be used for method invocation.
The Identifier must name at least one visible (86.3.1) method that isin scope at the
point where the Identifier appear or a method imported by a single-static-import
declaration (87.5.3) or static-import-on-demand declaration (87.5.4) within the
compilation unit within which the Identifier appears.

See 815.12 for further discussion of the interpretation of simple method namesin
method invocation expressions.

6.5.7.2 Qualified Method Names

A qualified method name can only appear in the context of a method invocation
expression. If amethod nameis of theform Q. 1d, then Q has already been classi-
fied as a package name, a type name, or an expression hame. If Q is a package
name, then a compile-time error occurs. Otherwise, 1d is the method name to be
used for method invocation. If Q is atype name, then 1d must name at least one
static method of thetype Q. If Q isan expression name, then let T be the type of
the expression Q; Id must name at |least one method of the type T. See §15.12 for
further discussion of the interpretation of qualified method names in method invo-
cation expressions.

137

6.6

138

Access Control NAMES

DiscussioN

Like expression names, method names may be qualified by type names, but not by types in
general. The implications are similar to those for expression names as discussed in
86.5.6.2.

6.6 Access Control

The Java programming language provides mechanisms for access control, to pre-
vent the users of a package or class from depending on unnecessary details of the
implementation of that package or class. If access is permitted, then the accessed
entity is said to be accessible.

Note that accessibility is a static property that can be determined at compile
time; it depends only on types and declaration modifiers. Qualified names are a
means of access to members of packages and reference types; related means of
access include field access expressions (8§15.11) and method invocation expres-
sions (8§15.12). All three are syntactically similar inthat a“.” token appears, pre-
ceded by some indication of a package, type, or expression having a type and
followed by an Identifier that names a member of the package or type. These are
collectively known as constructs for qualified access.

Access control applies to qualified access and to the invocation of construc-
tors by class instance creation expressions (815.9) and explicit constructor invoca
tions (88.8.7.1). Accessibility also effects inheritance of class members (88.2),
including hiding and method overriding (88.4.8.1).

6.6.1 Determining Accessibility
» A package is always accessible.

* If aclassor interface typeisdeclared pub1ic, then it may be accessed by any
code, provided that the compilation unit (87.3) in which it is declared is
observable. If atop level classor interface typeis not declared pub1ic, then it
may be accessed only from within the package in which it is declared.

» Anarray typeisaccessibleif and only if its element typeis accessible.

NAMES Details on protected Access 6.6.2

» A member (class, interface, field, or method) of a reference (class, interface,
or array) type or a constructor of a class type is accessible only if the typeis
accessible and the member or constructor is declared to permit access:

o If the member or constructor is declared pub1ic, then access is permitted.
All members of interfaces areimplicitly public.

o Otherwise, if the member or constructor isdeclared protected, then access
is permitted only when one of the following is true:

o Access to the member or constructor occurs from within the package
containing the class in which the protected member or constructor is
declared.

o Accessis correct as described in §6.6.2.

o Otherwise, if the member or constructor isdeclared private, then accessis
permitted if and only if it occurs within the body of the top level class (§7.6)
that encloses the declaration of the member or constructor.

o Otherwise, we say there is default access, which is permitted only when the
access occurs from within the package in which the type is declared.

6.6.2 Detailson protected Access

A protected member or constructor of an object may be accessed from outside
the package in which it is declared only by code that is responsible for the imple-
mentation of that object.

6.6.2.1 Accessto aprotected Member

Let C bethe classin which aprotected member misdeclared. Accessis permit-
ted only within the body of a subclass s of C. In addition, if 1d denotes an
instance field or instance method, then:

* If the access is by a qualified name Q. 1d, where Q is an ExpressionName,
then the access is permitted if and only if the type of the expression Q isS or a
subclass of S.

* If the access is by a field access expression E. 1d, where E is a Primary
expression, or by a method invocation expression E. I1d(. . .), whereE isa
Primary expression, then the accessis permitted if and only if thetype of E is
S or asubclass of S.

139

6.6.3

140

An Example of Access Control NAMES

6.6.2.2 Qualified Accessto a protected Constructor

Let ¢ be the class in which aprotected constructor is declared and let S be the
innermost class in whose declaration the use of the protected constructor
occurs. Then:

* If the access is by a superclass constructor invocation super(. . .) or by a
qualified superclass constructor invocation of the form E . super(. . .), where
E isaPrimary expression, then the accessis permitted.

* If the access is by an anonymous class instance creation expression of the
formnewC(...){...} or by aquaified classinstance creation expression of
the form E.new C(. . D{...}, where E is a Primary expression, then the
access is permitted.

» Otherwise, if the access is by a simple class instance creation expression of
theform new C (.. .) or by aqualified class instance creation expression of the
form E.new C (. . .), where E is a Primary expression, then the access is not
permitted. A protected constructor can be accessed by a class instance cre-
ation expression (that does not declare an anonymous class) only from within
the package in which it is defined.

6.6.3 An Example of Access Control

For examples of access control, consider the two compilation units:
package points;
class PointVec { Point[] vec; }
and:
package points;
public class Point {

protected int x, y;

pubTic void move(int dx, int dy) { x += dx; y += dy; }
public int getX() { return x; }

public int getY() { return y; }

}
which declare two class types in the package points:

* The class type PointVec is not pub1ic and not part of the pub1ic interface
of the package points, but rather can be used only by other classes in the
package.

» The classtype Point isdeclared pub1ic and is available to other packages. It
is part of the pub1i c interface of the package points.

NAMES Example: Access to public and Non-public Classes

» The methods move, getX, and getY of the class Point are declared public
and so are available to any code that uses an object of type Point.

» The fields x and y are declared protected and are accessible outside the
package points only in subclasses of class Point, and only when they are
fields of objects that are being implemented by the code that is accessing
them.

See §6.6.7 for an example of how the protected access modifier limits access.

6.6.4 Example: Accessto public and Non-publ-ic Classes

If a class lacks the pub1ic modifier, access to the class declaration is limited to
the package in which it is declared (86.6). In the example:
package points;
public class Point {
public int x, y;
public void move(int dx, int dy) { x += dx; y += dy; }

class PointList {
Point next, prev;
}
two classes are declared in the compilation unit. The class Point is available out-
side the package points, while the class PointList is available for access only
within the package.
Thus a compilation unit in another package can access points.Point, either
by using its fully qualified name:
package pointsUser;
class Test {
public static void main(String[] args) {
points.Point p = new points.Point();
System.out.printin(p.x + " " + p.y);
}
}
or by using a single-type-import declaration (87.5.1) that mentions the fully quali-
fied name, so that the simple name may be used thereafter:
package pointsUser;
import points.Point;
class Test {
public static void main(String[] args) {
Point p = new Point();
System.out.println(p.x +

+ p.y);
13

6.6.4

141

6.6.5

142

Example: Default-Access Fields, Methods, and Constructors NAMES

However, this compilation unit cannot use or import points.PointList, which
is not declared pub1i c and is therefore inaccessible outside package points.

6.6.5 Example: Default-Access Fields, Methods, and Constructors

If none of the access modifiers public, protected, or private are specified, a
class member or constructor is accessible throughout the package that contains the
declaration of the class in which the class member is declared, but the class mem-
ber or constructor is not accessible in any other package.

If apublic class has a method or constructor with default access, then this
method or constructor is not accessible to or inherited by a subclass declared out-
side this package.

For example, if we have:

package points;

public class Point {

public int x, y;

void move(int dx, int dy) { x += dx; y += dy; }

pubTic void moveAlso(int dx, int dy) { move(dx, dy); }
}

then a subclass in another package may declare an unrelated move method, with
the same signature (88.4.2) and return type. Because the original move method is
not accessible from package morepoints, super may not be used:

package morepoints;

public class PlusPoint extends points.Point {

pubTic void move(int dx, int dy) {
super.move(dx, dy); // compile-time error
moveAlso(dx, dy);
}
3

Because move of Point is not overridden by move in PTusPoint, the method
moveAlso in Point never calls the method movein PlusPoint.

Thus if you delete the super.move call from PTlusPoint and execute the test
program:

import points.Point;

import morepoints.PlusPoint;

class Test {

public static void main(String[] args) {

PTusPoint pp = new PlusPoint();
pp.move(l, 1);

NAMES Example: protected Fields, Methods, and Constructors ~ 6.6.7

it terminates normally. If move of Point were overridden by move in PTusPoint,
then this program would recurse infinitely, until a StackoverflowError
occurred.

6.6.6 Example: public Fields, Methods, and Constructors

A public class member or constructor is accessible throughout the package
whereit is declared and from any other package, provided the package in which it
isdeclared is observable (87.4.3). For example, in the compilation unit;
package points;
public class Point {
int x, y;
public void move(int dx, int dy) {
X += dx; y += dy;
moves++;
}
public static int moves = 0;
3
the pub1ic class Point has as pub1ic members the move method and the moves
field. These pub1ic members are accessible to any other package that has access
to package points. Thefields x and y are not pub1ic and therefore are accessible
only from within the package points.

6.6.7 Example: protected Fields, Methods, and Constructors

Consider this example, where the points package declares:
package points;
public class Point {
protected int x, y;
void warp(threePoint.Point3d a) {
if (a.z > 0) // compile-time error: cannot accessa.z
a.delta(this);
b
}

and the threePoint package declares:
package threePoint;
import points.Point;
public class Point3d extends Point {
protected int z;
pubTic void delta(Point p) {
p.x += this.x; // compile-time error: cannot accessp.x

143

6.6.8

144

Example: private Fields, Methods, and Constructors NAMES

p.y += this.y; // compile-timeerror: cannot accessp.y

public void delta3d(Point3d q) {
g.x += this.x;
g.y += this.y;
g.z += this.z;
}
}

which defines a class Point3d. A compile-time error occurs in the method delta
here: it cannot access the protected members x and y of its parameter p, because
while Point3d (the classin which the referencesto fields x and y occur) is a sub-
class of Point (the classin which x and y are declared), it is not involved in the
implementation of a Point (the type of the parameter p). The method de1ta3d
can access the protected members of its parameter q, because the class Point3d is
asubclass of Point and isinvolved in the implementation of a Point3d.

The method delta could try to cast (85.5, §15.16) its parameter to be a
Point3d, but this cast would fail, causing an exception, if the class of p at run
time were not Point3d.

A compile-time error also occursin the method warp: it cannot access the pro-
tected member z of its parameter a, because while the class Point (the classin
which the reference to field z occurs) is involved in the implementation of a
Point3d (thetype of the parameter a), it isnot a subclass of Point3d (theclassin
which z is declared).

6.6.8 Example private Fields, Methods, and Constructors

A private class member or constructor is accessible only within the body of the
top level class (8§7.6) that encloses the declaration of the member or constructor. It
is not inherited by subclasses. In the example:
class Point {
Point() { setMasterID(); }
int x, y;
private int ID;

private static int masterID = O;
private void setMasterID() { ID =

}
the private members ID, masterID, and setMasterID may be used only
within the body of class Point. They may not be accessed by qualified names,
field access expressions, or method invocation expressions outside the body of the
declaration of Point.

See §8.8.8 for an example that uses a private constructor.

masterID++; }

NAMES Fully Qualified Names and Canonical Names

6.7 Fully Qualified Names and Canonical Names

Ev

ery package, top level class, top level interface, and primitive type has a fully

qualified name. An array type has afully qualified nameif and only if its element
type has afully qualified name.

The fully qualified name of a primitive type is the keyword for that primitive
type, namely boolean, char, byte, short, int, Tong, float, or doubTe.

The fully qualified name of a named package that is not a subpackage of a
named package isits simple name.

The fully qualified name of a hamed package that is a subpackage of another
named package consists of the fully qualified name of the containing package,
followed by “.”, followed by the simple (member) name of the subpackage.

The fully quaified name of a top level class or top level interface that is
declared in an unnamed package is the simple name of the class or interface.

The fully qualified name of a top level class or top level interface that is
declared in a named package consists of the fully qualified name of the pack-
age, followed by “.”, followed by the simple name of the class or interface.

A member class or member interface M of another class ¢ has afully qualified
name if and only if ¢ has afully qualified name. In that case, the fully quali-
fied name of M consists of the fully qualified name of c, followed by “.”, fol-
lowed by the simple name of M.

The fully qualified name of an array type consists of the fully qualified name
of the component type of the array type followed by “[]”.

Examples:

In

» The fully qualified name of thetype Tong is“1ong”.

» The fully qualified name of the package java.lang is“java.lang” because
it is subpackage 1ang of package java.

* The fully qualified name of the class Object, which is defined in the package
java.lang,is“java.lang.Object”.

* The fully qualified name of the interface Enumeration, which is defined in
the package java.util,is“java.util.Enumeration”.

» The fully qualified name of the type “array of double” is“double[]”.

* The fully qualified name of the type “array of array of array of array of
String” is“java.lang.String[J[]1[][]".

the example:

6.7

145

6.8

146

Naming Conventions NAMES

package points;

class Point { int x, y; }

class PointVec {

Point[] vec;

3
the fully qualified name of the type Point is“points.Point”; the fully qualified
name of the type PointVec is“points.PointVec”; and the fully qualified name
of the type of thefield vec of classPointVec is“points.Point[]”.

Every package, top level class, top level interface, and primitive type has a
canonical name. An array type has a canonical name if and only if its element
type has a canonical name. A member class or member interface M declared in
another class ¢ has acanonical nameif and only if C has a canonical name. In that
case, the canonical name of M consists of the canonical name of c, followed by
“.”, followed by the simple name of M. For every package, top level class, top
level interface and primitive type, the canonical name isthe same asthe fully qual-
ified name. The canonical name of an array type is defined only when the compo-
nent type of the array has a canonical name. In that case, the canonical name of the
array type consists of the canonical name of the component type of the array type
followed by “[1".

The difference between a fully qualified name and a canonical name can be
seen in examples such as:

package p;

class 01 { class I{}}

class 02 extends 01{};

In this example both p.01.I and p.02.I arefully qualified names that denote the
same class, but only p.01.I isitscanonica name.

6.8 Naming Conventions

The class libraries of the Java platform attempt to use, whenever possible, names
chosen according to the conventions presented here. These conventions help to
make code more readable and avoid certain kinds of name conflicts.

We recommend these conventions for use in all programs written in the Java
programming language. However, these conventions should not be followed slav-
ishly if long-held conventional usage dictates otherwise. So, for example, the sin
and cos methods of the class java. Tang.Math have mathematically conventional
names, even though these method names flout the convention suggested here
because they are short and are not verbs.

NAMES Class and Interface Type Names

6.8.1 Package Names

Names of packages that are to be made widely available should be formed as
described in 87.7. Such names are aways qualified names whose first identifier
consists of two or three lowercase letters that name an Internet domain, such as
com, edu, gov, mil, net, org, or atwo-letter ISO country code such as uk or jp.
Here are examples of hypothetical unique names that might be formed under this
convention:

com.JavaSoft.jag.0ak

org.npr.pledge.driver
uk.ac.city.rugby.game

Names of packages intended only for local use should have a first identifier
that begins with a lowercase letter, but that first identifier specifically should not
be the identifier java; package names that start with the identifier java are
reserved by Sun for naming Java platform packages.

When package names occur in expressions:

* If apackage nameis obscured by afield declaration, then import declarations
(87.5) can usually be used to make available the type names declared in that
package.

* If a package name is obscured by a declaration of a parameter or local vari-
able, then the name of the parameter or local variable can be changed without
affecting other code.

The first component of a package name is normally not easily mistaken for a
type name, as a type name normally begins with a single uppercase letter. (The
Java programming language does not actually rely on case distinctions to deter-
mine whether a name is a package name or atype name.)

6.8.2 Classand Interface Type Names

Names of class types should be descriptive nouns or noun phrases, not overly
long, in mixed case with the first letter of each word capitalized. For example:
ClassLoader

SecurityManager
Thread

Dictionary
BufferedInputStream

Likewise, names of interface types should be short and descriptive, not overly
long, in mixed case with thefirst letter of each word capitalized. The name may be
a descriptive noun or noun phrase, which is appropriate when an interface is used
as if it were an abstract superclass, such as interfaces java.io.DataInput and

6.8.2

147

6.8.3

148

Type Variable Names NAMES

java.io.DataOutput; or it may be an adjective describing a behavior, as for the
interfaces Runnable and CloneabTe.

Obscuring involving class and interface type names is rare. Names of fields,
parameters, and local variables normally do not obscure type names because they
conventionally begin with a lowercase letter whereas type nhames conventionally
begin with an uppercase |etter.

6.8.3 Type Variable Names

Type variable names should be pithy (single character if possible) yet evocative,
and should not include lower case |etters.

DiscussioN

This makes it easy to distinguish formal type parameters from ordinary classes and inter-
faces.

Ccontainer types should use the name E for their element type. Maps should use K
for the type of their keysand V for the type of their values. The name X should be
used for arbitrary exception types. We use T for type, whenever there isn't any-
thing more specific about the type to distinguish it.

DiscussioN

This is often the case in generic methods.

If there are multiple type parameters that denote arbitrary types, one should
use lettersthat neighbor T in the al phabet, such asS. Alternately, it is acceptable to
use numeric subscripts (e.g., T1, T2) to distinguish among the different type vari-
ables. In such cases, al the variables with the same prefix should be subscripted.

NAMES Method Names 6.8.4

DiscussioN

If a generic method appears inside a generic class, it's a good idea to avoid using the same
names for the type parameters of the method and class, to avoid confusion. The same
applies to nested generic classes.

DiscussioN

These conventions are illustrated in the code snippets below:
public class HashSet<E> extends AbstractSet<E> { ... }
public class HashMap<K,V> extends AbstractMap<K,V> { ... }
pubTlic class ThreadlLocal<T> { ... }
public interface Functor<T, X extends Throwable> {
T eval() throws X;
3

When type parameters do not fall conveniently into one of the categories men-
tioned, names should be chosen to be as meaningful as possible within the con-
fines of asingle letter. The names mentioned above (E, K, T, V, X) should not
be used for type parameters that do not fall into the designated categories.

6.8.4 Method Names

Method names should be verbs or verb phrases, in mixed case, with the first letter
lowercase and the first letter of any subsequent words capitalized. Here are some
additional specific conventions for method names:

» Methods to get and set an attribute that might be thought of as a variable V
should be named getV and setV. An example is the methods getPriority
and setPriority of class Thread.

» A method that returns the length of something should be named Tength, asin
classString.

» A method that tests aboolean condition V about an object should be named
isV. An exampleisthe method isInterrupted of class Thread.

149

6.8.5

150

Field Names NAMES

» A method that converts its object to a particular format F should be named
toF. Examples are the method toString of class Object and the methods
toLocaleString and toGMTString of class java.util.Date.

Whenever possible and appropriate, basing the names of methods in a new class
on names in an existing class that is similar, especially a class from the Java
Application Programming Interface classes, will make it easier to use.

Method names cannot obscure or be obscured by other names (86.5.7).

6.8.5 Fidd Names

Names of fields that are not final should be in mixed case with alowercase first
letter and thefirst letters of subsequent words capitalized. Note that well-designed
classes have very few public or protected fields, except for fields that are con-
stants (final static fields) (86.8.6).

Fields should have names that are nouns, noun phrases, or abbreviations for
nouns. Examples of this convention are thefields buf, pos, and count of the class
java.io.ByteArrayInputStream andthefield bytesTransferred of the class
java.io.InterruptedIOException.

Obscuring involving field namesis rare.

« If afield name obscures a package name, then an import declaration (87.5)
can usually be used to make available the type names declared in that pack-
age.

« If afield name obscures a type name, then a fully qualified name for the type
can be used unless the type name denotes a local class (§14.3).

* Field names cannot obscure method names.

« If afield name is shadowed by a declaration of a parameter or local variable,
then the name of the parameter or local variable can be changed without
affecting other code.

6.8.6 Constant Names

The names of constants in interface types should be, and final variables of class
types may conventionally be, a sequence of one or more words, acronyms, or
abbreviations, all uppercase, with components separated by underscore “_" char-
acters. Constant names should be descriptive and not unnecessarily abbreviated.
Conventionally they may be any appropriate part of speech. Examples of names
for constants include MIN_VALUE, MAX_VALUE, MIN_RADIX, and MAX_RADIX of the
classCharacter.

NAMES Local Variable and Parameter Names

A group of constants that represent alternative values of a set, or, less fre-
guently, masking bits in an integer value, are sometimes usefully specified with a
common acronym as a name prefix, asin:

interface ProcessStates {

int PS_RUNNING = 0;
int PS_SUSPENDED = 1;

3

Obscuring involving constant namesis rare:

* Constant names normally have no lowercase letters, so they will not normally
obscure names of packages or types, nor will they normally shadow fields,
whose names typically contain at least one lowercase letter.

» Constant names cannot obscure method names, because they are distin-
guished syntactically.

6.8.7 Local Variable and Parameter Names
Local variable and parameter names should be short, yet meaningful. They are
often short sequences of lowercase letters that are not words. For example:

» Acronyms, that is the first letter of a series of words, as in cp for a variable
holding areferenceto aColoredPoint

* Abbreviations, asin buf holding a pointer to abuffer of somekind

* Mnemonic terms, organized in some way to aid memory and understanding,
typically by using a set of local variables with conventional names patterned
after the names of parameters to widely used classes. For example:

o in and out, whenever some kind of input and output are involved, patterned
after thefields of System

o off and T1en, whenever an offset and length are involved, patterned after the
parametersto the read and wri te methods of the interfacesDataInput and
DataOutput of java.io

One-character local variable or parameter names should be avoided, except
for temporary and looping variables, or where a variable holds an undistinguished
value of atype. Conventional one-character names are;

*b for abyte

e c forachar
edforadouble

e for an Exception
» fforafloat

6.8.7

151

6.8.7 Local Variable and Parameter Names NAMES

1, j, and k for integers

1 foralong

*o for anObject

esforaString

« v for an arbitrary value of sometype

Local variable or parameter names that consist of only two or three lowercase
letters should not conflict with theinitial country codes and domain names that are
the first component of unique package names (87.7).

152

CHAPTER ;

Packageé

PROGRAMS are organized as sets of packages. Each package has its own set of
names for types, which helps to prevent name conflicts. A top level type is acces-
sible (86.6) outside the package that declares it only if the type is declared pub-
Tic.

The naming structure for packages is hierarchical (87.1). The members of a
package are class and interface types (87.6), which are declared in compilation
units of the package, and subpackages, which may contain compilation units and
subpackages of their own.

A package can be stored in afile system (87.2.1) or in a database (87.2.2).
Packages that are stored in afile system may have certain constraints on the orga-
nization of their compilation units to allow a simple implementation to find
classes easily.

A package consists of a number of compilation units (87.3). A compilation
unit automatically has accessto al types declared in its package and al so automat-
icaly imports al of the public types declared in the predefined package
java.lang.

For small programs and casual development, a package can be unnamed
(87.4.2) or have a simple name, but if code is to be widely distributed, unique
package names should be chosen (87.7). This can prevent the conflicts that would
otherwise occur if two development groups happened to pick the same package
name and these packages were |ater to be used in asingle program.

153

7.1

154

Package Members PACKAGES

7.1 Package Members

The members of a package are its subpackages and all the top level (87.6)
class types (88) and top level interface types (89) declared in al the compilation
units (87.3) of the package.

For example, in the Java Application Programming Interface:

* The package java has subpackages awt, applet, io, lang, net, and util,
but no compilation units.

* The package java.awt has a subpackage named image, as well as a number
of compilation units containing declarations of class and interface types.

If the fully qualified name (86.7) of a package is P, and Q is a subpackage of P,
then P .Q isthe fully qualified name of the subpackage.

A package may not contain two members of the same name, or a compile-
time error results.

Here are some examples:

* Because the package java.awt has a subpackage image, it cannot (and does
not) contain a declaration of aclass or interface type named image.

« If there is a package named mouse and a member type Button in that package
(which then might be referred to as mouse . Button), then there cannot be any
package with the fully qualified name mouse.Button Or mouse.But-
ton.Click.

*If com.sun.java. jag isthefully qualified name of atype, then there cannot
be any package whose fully qualified name is either com.sun.java.jag or
com.sun.java.jag.scrabble.

The hierarchical naming structure for packages is intended to be convenient
for organizing related packages in a conventional manner, but has no significance
in itself other than the prohibition against a package having a subpackage with the
same simple name as a top level type (87.6) declared in that package. Thereis no
specia access relationship between a package named o1iver and another pack-
age named oliver.twist, or between packages named evelyn.wood and eve-
Tyn.waugh. For example, the code in a package named oliver.twist has no
better access to the types declared within package o11iver than code in any other
package.

PACKAGES Soring Packagesin a File System

7.2 Host Support for Packages

Each host determines how packages, compilation units, and subpackages are cre-
ated and stored, and which compilation units are observable (87.3) in a particular
compilation.

The observability of compilation unitsin turn determines which packages are
observable, and which packages are in scope.

The packages may be stored in alocal file system in simple implementations
of the Java platform. Other implementations may use a distributed file system or
some form of database to store source and/or binary code.

7.2.1 Storing Packagesin a File System

As an extremely simple example, all the packages and source and binary code on
asystem might be stored in asingle directory and its subdirectories. Each immedi-
ate subdirectory of this directory would represent atop level package, that is, one
whose fully qualified name consists of a single simple name. The directory might
contain the following immediate subdirectories:

com

gls

jag

java

wnj
where directory java would contain the Java Application Programming Interface
packages; the directories jag, g1s, and wnj might contain packages that three of
the authors of this specification created for their personal use and to share with
each other within this small group; and the directory com would contain packages
procured from companies that used the conventions described in 87.7 to generate
unigque names for their packages.

Continuing the example, the directory java would contain, among others, the
following subdirectories:

applet

awt

10

Tang

net

util
corresponding to the packages java.applet, java.awt, java.io, java.lang,
java.net, and java.util that are defined as part of the Java Application Pro-
gramming Interface.

7.2.1

155

721

156

Soring Packagesin a File System PACKAGES

Still continuing the example, if we were to look inside the directory uti1, we
might see the following files:

BitSet.java Observable.java
BitSet.class Observable.class
Date.java Observer.java
Date.class Observer.class

where each of the . java files contains the source for a compilation unit (87.3) that
contains the definition of a class or interface whose binary compiled form is con-
tained in the corresponding . class file.

Under this simple organization of packages, an implementation of the Java
platform would transform a package name into a pathname by concatenating the
components of the package name, placing a file name separator (directory indica-
tor) between adjacent components.

For example, if this simple organization were used on a UNIX system, where
the file name separator is /, the package name:

jag.scrabble.board
would be transformed into the directory name:

jag/scrabble/board
and:

com. sun.sunsoft.DOE
would be transformed to the directory name:

com/sun/sunsoft/DOE

A package name component or class name might contain a character that can-
not correctly appear in ahost file system’s ordinary directory name, such asaUni-
code character on a system that allows only ASCII charactersin file names. As a
convention, the character can be escaped by using, say, the @ character followed
by four hexadecimal digits giving the numeric value of the character, as in the
\uxxxx escape (83.3), so that the package name:

children.activities.crafts.papierM\u0Oe2ch\u00e9
which can aso be written using full Unicode as:

children.activities.crafts.papierMaché
might be mapped to the directory name:
children/activities/crafts/papierM@00e2ch@00e9
If the @ character is not a valid character in a file name for some given host file
system, then some other character that is not valid in a identifier could be used
instead.

PACKAGES Compilation Units

7.2.2 Storing Packagesin a Database

A host system may store packages and their compilation units and subpackages in
adatabase.

Such a database must not impose the optional restrictions (87.6) on compila-
tion units in file-based implementations. For example, a system that uses a data-
base to store packages may not enforce a maximum of one public class or
interface per compilation unit.

Systems that use a database must, however, provide an option to corvert a
program to a form that obeys the restrictions, for purposes of export to file-based
implementations.

7.3 Compilation Units

CompilationUnit is the goal symbol (82.1) for the syntactic grammar (82.3) of
Java programs. It is defined by the following productions:

CompilationUnit:
PackageDeclarationy, ImportDeclarationsyy TypeDeclarationsyy

ImportDeclarations:
ImportDeclaration
ImportDeclarations ImportDeclaration

TypeDeclarations:
TypeDeclaration
TypeDeclarations TypeDeclaration

Types declared in different compilation units can depend on each other, circularly.
A Java compiler must arrange to compile al such types at the sametime.
A compilation unit consists of three parts, each of which is optional:

* A package declaration (87.4), giving the fully qualified name (86.7) of the
package to which the compilation unit belongs. A compilation unit that has no
package declaration is part of an unnamed package (87.4.2).

 import declarations (87.5) that allow types from other packages and static
members of typesto be referred to using their simple names

» Top level type declarations (87.6) of class and interface types

Which compilation units are observable is determined by the host system.
However, all the compilation units of the package java and its subpackages T1ang

7.3

157

7.4

158

Package Declarations PACKAGES

and io must always be observable. The observability of a compilation unit influ-
ences the observability of its package (§7.4.3).

Every compilation unit automatically and implicitly imports every public
type name declared by the predefined package java.lang, so that the names of
al those types are available as simple names, as described in 87.5.5.

7.4 Package Declarations

A package declaration appears within a compilation unit to indicate the package
to which the compilation unit belongs.

7.4.1 Named Packages

A package declaration in a compilation unit specifies the name (86.2) of the pack-
age to which the compilation unit belongs.

PackageDeclaration:
Annotationsy, package PackageName ;

The keyword package may optionally be preceded by annotation modifiers
(89.7). If an annotation a on a package declaration corresponds to an annotation
type T, and T has a (meta-)annotation m that corresponds to annotation.Tar-
get, then m must have an dement whose value is annotation.Element-
Type . PACKAGE, or a compile-time error occurs.

The package name mentioned in a package declaration must be the fully qual-
ified name (86.7) of the package.

7.4.1.1 Package Annotations

Annotations may be used on package declarations, with the restriction that at
most one annotated package declaration is permitted for a given package.

DiscussioN

The manner in which this restriction is enforced must, of necessity, vary from implementa-
tion to implementation. The following scheme is strongly recommended for file-system-
based implementations: The sole annotated package declaration, if it exists, is placed in a
source file called package-info.java in the directory containing the source files for the
package. This file does not contain the source for a class called package-info.java; indeed it
would be illegal for it to do so, as package-info is not a legal identifier. Typically package-
info.java contains only a package declaration, preceded immediately by the annotations

PACKAGES Unnamed Packages

on the package. While the file could technically contain the source code for one or more
package-private classes, it would be very bad form.

It is recommended that package-info.java, if it is present, take the place of pack-
age.html for javadoc and other similar documentation generation systems. If this file is
present, the documentation generation tool should look for the package documentation
comment immediately preceding the (possibly annotated) package declaration in package-
info.java. In this way, package-info.java becomes the sole repository for package level
annotations and documentation. If, in future, it becomes desirable to add any other pack-
age-level information, this file should prove a convenient home for this information.

7.4.2 Unnamed Packages

A compilation unit that has no package declaration is part of an unnamed package.
Note that an unnamed package cannot have subpackages, since the syntax of a
package declaration always includes areference to a named top level package.
As an example, the compilation unit:
class FirstCall {

public static void main(String[] args) {
System.out.println("Mr. Watson, come here.
+ "I want you.");

}

defines avery simple compilation unit as part of an unnamed package.

An implementation of the Java platform must support at least one unnamed
package; it may support more than one unnamed package but is not required to do
s0. Which compilation units are in each unnamed package is determined by the
host system.

In implementations of the Java platform that use a hierarchical file system for
storing packages, one typical strategy is to associate an unnamed package with
each directory; only one unnamed package is observable at atime, namely the one
that is associated with the “current working directory.” The precise meaning of
“current working directory” depends on the host system.

Unnamed packages are provided by the Java platform principaly for conve-
nience when developing small or temporary applications or when just beginning
devel opment.

7.4.2

159

74.3

160

Observability of a Package PACKAGES

7.4.3 Observability of a Package
A package is observable if and only if either:

» A compilation unit containing a declaration of the package is observable.

* A subpackage of the packageis observable.

One can conclude from the rule above and from the regquirements on observ-
able compilation units, that the packages java, java.lang, and java.io are
always observable.

7.4.4 Scope of a Package Declar ation

The scope of the declaration of an observable (87.4.3) top level package is all
observable compilation units (87.3). The declaration of a package that is not
observable is never in scope. Subpackage declarations are never in scope.

It follows that the package java is awaysin scope (86.3).

Package declarations never shadow other declarations.

7.5 Import Declarations

Animport declaration alows a static member or a named type to be referred to by
a simple name (86.2) that consists of a single identifier. Without the use of an
appropriate import declaration, the only way to refer to atype declared in another
package, or a static member of another type, is to use a fully qualified name

(86.7).

ImportDeclaration:
SngleTypel mportDeclaration
TypelmportOnDemandDeclaration
SngleSaticlmportDeclaration
SaticlmportOnDemandDeclaration

A single-type-import declaration (87.5.1) imports a single named type, by men-
tioning its canonical name (86.7).

A type-import-on-demand declaration (87.5.2) imports all the accessible
(86.6) types of a named type or package as needed. It is a compile time error to
import atype from the unnamed package.

A single static import declaration (87.5.3) imports all accessible static mem-
bers with a given name from atype, by giving its canonical name.

PACKAGES Sngle-Type-Import Declaration 7.5.1

A static-import-on-demand declaration (87.5.4) imports all accessible static
members of a named type as needed.

The scope of atype imported by a single-type-import declaration (§87.5.1) or a
type-import-on-demand declaration (87.5.2) isall the class and interface type dec-
larations (87.6) in the compilation unit in which the import declaration appears.

The scope of a member imported by a single-static-import declaration
(87.5.3) or a static-import-on-demand declaration (87.5.4) is al the class and
interface type declarations (87.6) in the compilation unit in which the import dec-
laration appears.

An import declaration makes types available by their simple names only
within the compilation unit that actually contains the import declaration. The
scope of the entities(s) it introduces specifically does not include the package
statement, other import declarations in the current compilation unit, or other
compilation units in the same package. See §7.5.6 for an illustrative example.

7.5.1 Single-Type-lmport Declaration

A single-type-import declaration imports a single type by giving its canonical
name, making it available under a smple name in the class and interface declara-
tions of the compilation unit in which the single-type import declaration appears.

SngleTypel mportDeclaration:
import TypeName ;

The TypeName must be the canonical name of a class or interface type; a compile-
time error occurs if the named type does not exist. The named type must be acces-
sible (86.6) or a compile-time error occurs.

A single-type-import declaration d in a compilation unit ¢ of package p that
imports a type named n shadows the declarations of:

 any top level type named n declared in another compilation unit of p.
* any type named n imported by atype-import-on-demand declarationin c.
 any type named n imported by a static-import-on-demand declarationin c.
throughout c.
The example:
import java.util.Vector;

causes the simple name Vector to be available within the class and interface dec-
larations in a compilation unit. Thus, the simple name Vector refers to the type
declaration Vector in the package java.util in all places where it is not shad-

161

751

162

Sngle-Type-Import Declaration PACKAGES

owed (86.3.1) or obscured (86.3.2) by a declaration of a field, parameter, local
variable, or nested type declaration with the same name.

DiscussioN

Note that Vector is declared as a generic type. Once imported, the name Vector can be
used without qualification in a parameterized type such as Vector<String>, or as the raw
type Vector.

This highlights a limitation of the import declaration. A type nested inside a generic
type declaration can be imported, but its outer type is always erased.

If two single-type-import declarationsin the same compilation unit attempt to
import types with the same simple name, then a compile-time error occurs, unless
the two types are the same type, in which case the duplicate declaration isignored.
If the type imported by the the single-type-import declaration is declared in the
compilation unit that contains the import declaration, the import declaration is
ignored. If a compilation unit contains both a single-static-import (87.5.3) decla-
ration that imports atype whose simple nameis n, and a single-type-import decla-
ration (87.5.1) that imports a type whose simple name is n, a compile-time error
OCCUrsS.

If another top level type with the same simple name is otherwise declared in
the current compilation unit except by a type-import-on-demand declaration
(87.5.2) or a static-import-on-demand declaration (87.5.4), then a compile-time
error occurs.

So the sample program:

import java.util.Vector;

class Vector { Object[] vec; }
causes a compile-time error because of the duplicate declaration of Vector, as
does:

import java.util.Vector;

import myVector.Vector;
wheremyVector is apackage containing the compilation unit:

package myVector;

public class Vector { Object[] vec; }
The compiler keeps track of types by their binary names (813.1).

PACKAGES Type-Import-on-Demand Declaration

Note that an import statement cannot import a subpackage, only a type. For
example, it does not work to try to import java.util and then use the name
util.Random to refer to thetype java.util.Random:

import java.util; // incorrect: compile-time error
class Test { util.Random generator; }

7.5.2 Type-lmport-on-Demand Declaration

A type-import-on-demand declaration allows all accessible (86.6) types declared
in the type or package named by a canonical name to be imported as needed.

Typel mportOnDemandDeclaration:
import PackageOrTypeName . * ;

It is a compile-time error for a type-import-on-demand declaration to name a
type or package that is not accessible. Two or more type-import-on-demand decla
rations in the same compilation unit may name the same type or package. All but
one of these declarations are considered redundant; the effect isasif that type was
imported only once.

If a compilation unit contains both a static-import-on-demand declaration and
a type-import-on-demand (87.5.2) declaration that name the same type, the effect
isasif the static member types of that type were imported only once.

It is not a compile-time error to name the current package or java.langina
type-import-on-demand declaration. The type-import-on-demand declaration is
ignored in such cases.

A type-import-on-demand declaration never causes any other declaration to
be shadowed.

The example:

import java.util.*;
causes the simple names of all pub1i ¢ types declared in the package java.util
to be available within the class and interface declarations of the compilation unit.
Thus, the simple name Vector refers to the type Vector in the package
java.util inall placesin the compilation unit where that type declaration is not
shadowed (86.3.1) or obscured (86.3.2). The declaration might be shadowed by a
single-type-import declaration of atype whose simple nameisVector; by atype
named Vector and declared in the package to which the compilation unit belongs;
or any nested classes or interfaces. The declaration might be obscured by a decla-
ration of afield, parameter, or local variable named Vector (It would be unusual
for any of these conditions to occur.)

7.5.2

163

753

164

Sngle Satic Import Declaration PACKAGES

7.5.3 Single Static Import Declaration

A single-static-import declaration imports all accessible (86.6) static members
with a given simple name from a type. This makes these static members available
under their smple name in the class and interface declarations of the compilation
unit in which the single-static import declaration appears.

SngleSaticlmportDeclaration:
import static TypeName. Identifier;

The TypeName must be the canonical name of a class or interface type; a compile-
time error occurs if the named type does not exist. The named type must be acces-
sible (86.6) or a compile-time error occurs. The Identifier must name at least one
static member of the named type; a compile-time error occursif there is no mem-
ber of that name or if al of the named members are not accessible.

A single-static-import declaration d in a compilation unit ¢ of package p that
imports a field named n shadows the declaration of any static field named n
imported by a static-import-on-demand declaration in c, throughout c.

A single-static-import declaration d in a compilation unit ¢ of package p that
imports a method named n with signature s shadows the declaration of any static
method named n with signature s imported by a static-import-on-demand decla-
rationin c, throughout c.

A single-static-import declaration d in a compilation unit ¢ of package p that
imports atype named n shadows the declarations of

* any static type named n imported by a static-import-on-demand declaration in
C.

* any top level type (87.6) named n declared in ancther compilation unit (87.3)
of p.

 any type named n imported by a type-import-on-demand declaration (87.5.2)
inc.

throughout c.

Note that it is permissable for one single-static-import declaration to import
severa fidds or types with the same name, or several methods with the same
name and signature.

If a compilation unit contains both a single-static-import (87.5.3) declaration
that imports a type whose simple name is n, and a single-type-import declaration
(87.5.1) that imports a type whose simple name is n, a compile-time error occurs.

If a single-static-import declaration imports a type whose simple name is n,
and the compilation unit also declares a top level type (87.6) whose simple name
isn, acompile-time error occurs.

PACKAGES A Srange Example

7.5.4 Static-lmport-on-Demand Declaration

A static-import-on-demand declaration allows all accessible (86.6) static mem-
bers declared in the type named by a canonical name to be imported as needed.

Saticl mportOnDemandDeclaration:
import static TypeName . * ;

It isacompile-time error for a static-import-on-demand declaration to name a
type that does not exist or atype that is not accessible. Two or more static-import-
on-demand declarations in the same compilation unit may name the same type or
package; the effect is as if there was exactly one such declaration. Two or more
static-import-on-demand declarations in the same compilation unit may name the
same member; the effect is asif the member was imported exactly once.

Note that it is permissable for one static-import-on-demand declaration to
import severa fields or types with the same name, or several methods with the
same name and signature.

If a compilation unit contains both a static-import-on-demand declaration and
atype-import-on-demand (87.5.2) declaration that name the same type, the effect
isasif the static member types of that type were imported only once.

A static-import-on-demand declaration never causes any other declaration to
be shadowed.

7.5.5 Automatic Imports

Each compilation unit automaticaly imports al of the public type names
declared in the predefined package java.lang, asif the declaration:

import java.lang.*;

appeared at the beginning of each compilation unit, immediately following any
package statement.

7.5.6 A Strange Example

Package names and type names are usually different under the naming conven-
tions described in 86.8. Nevertheless, in a contrived example where there is an
unconventional ly-named package Vector, which declares apub1i ¢ class whose

7.5.6

165

7.6

166

Top Level Type Declarations PACKAGES

nameisMosquito:

package Vector;

public class Mosquito { int capacity; }
and then the compilation unit:

package strange.example;
import java.util.Vector;
import Vector.Mosquito;

class Test {

public static void main(String[] args) {
System.out.printin(new Vector().getClass());
System.out.printin(new Mosquito().getClass());

}

3
the single-type-import declaration (87.5.1) importing class Vector from package
java.util does not prevent the package name Vector from appearing and being
correctly recognized in subsequent import declarations. The example compiles
and produces the output:

class java.util.Vector

class Vector.Mosquito

7.6 Top Level Type Declarations

A top level type declaration declares atop level classtype (88) or atop level inter-
face type (89):

TypeDeclaration:
ClassDeclaration
InterfaceDeclaration

By default, the top level types declared in a package are accessible only
within the compilation units of that package, but a type may be declared to be
public to grant access to the type from code in other packages (86.6, §88.1.1,
89.1.1).

The scope of atop level typeis al type declarations in the package in which
the top level typeis declared.

If atop level type named T is declared in a compilation unit of a package
whose fully qualified name is P, then the fully qualified name of the typeisP.T.
If the typeis declared in an unnamed package (87.4.2), then the type has the fully
gualified name .

PACKAGES Top Level Type Declarations

Thusin the example:

package wnj.points;

class Point { int x, y; }
the fully qualified name of class Point iswnj.points.Point.

An implementation of the Java platform must keep track of types within pack-
ages by their binary names (813.1). Multiple ways of naming a type must be
expanded to binary names to make sure that such names are understood as refer-
ring to the same type.

For example, if acompilation unit contains the single-type-import declaration
(87.5.1):

import java.util.Vector;

then within that compilation unit the ssmple name Vector and the fully qualified
name java.util.Vector refer to the sametype.

When packages are stored in a file system (8§7.2.1), the host system may
choose to enforce the restriction that it is a compile-time error if a type is not
found in a file under a name composed of the type name plus an extension (such
as .java or .jav) if either of the following is true:

» The type is referred to by code in other compilation units of the package in
which the type is declared.

» The type is declared public (and therefore is potentialy accessible from
codein other packages).

This restriction implies that there must be at most one such type per compilation
unit. This restriction makes it easy for a compiler for the Java programming lan-
guage or an implementation of the Java virtual machine to find a named class
within a package;, for example, the source code for a public type
wet.sprocket.Toad would be found in afile Toad. java in the directory wet/
sprocket, and the corresponding object code would be found in the file
Toad. class in the same directory.

When packages are stored in a database (87.2.2), the host system must not
impose such restrictions. In practice, many programmers choose to put each class
or interface type in its own compilation unit, whether or not it is public or is
referred to by code in other compilation units.

A compile-time error occurs if the name of a top level type appears as the
name of any other top level class or interface type declared in the same package
(87.6).

7.6

167

7.6

168

Top Level Type Declarations PACKAGES

A compile-time error occursif the name of atop level typeisalso declared as
atype by a single-type-import declaration (87.5.1) in the compilation unit (87.3)
containing the type declaration.

In the example:

class Point { int x, y; }
the class Point is declared in a compilation unit with no package statement, and
thus Point isitsfully qualified name, whereas in the example:

package vista;

class Point { int x, y; }
the fully qualified name of the class Point is vista.Point. (The package name
vista is suitable for local or persona use; if the package were intended to be
widely distributed, it would be better to give it a unique package name (87.7).)

In the example:

package test;

import java.util.Vector;

class Point {

int x, y;

3

interface Point { // compile-time error #1
int getRQ);
int getTheta();

3

class Vector { Point[] pts; }// compile-time error #2

the first compile-time error is caused by the duplicate declaration of the name
Point as both a 1555 and an interface in the same package. A second error
detected at compile time is the attempt to declare the name Vector both by aclass
type declaration and by a single-type-import declaration.

Note, however, that it is not an error for the name of a class to aso to name a
type that otherwise might be imported by a type-import-on-demand declaration
(87.5.2) in the compilation unit (87.3) containing the class declaration. In the
example:

package test;
import java.util.*;
class Vector { Point[] pts; }// nhotacompile-timeerror

PACKAGES Unique Package Names 17

the declaration of the class Vector is permitted even though there is also a class
java.util.Vector. Within this compilation unit, the simple name Vector refers
to the class test.Vector, not to java.util.Vector (which can still be referred
to by code within the compilation unit, but only by its fully qualified name).

As another example, the compilation unit:
package points;

class Point {

int x, y; // coordinates
PointColor color; // color of this point
Point next; // next point with this color
static int nPoints;

}

class PointColor {
Point Ffirst; /7 first point with this color
PointColor(int color) {

this.color = color;

3
private int color; // color components

}

defines two classes that use each other in the declarations of their class members.
Because the class types Point and PointColor have al the type declarations in
package points, including all those in the current compilation unit, as their
scope, this example compiles correctly—that is, forward reference is not a prob-
lem.

Itisacompile-timeerror if atop level type declaration contains any one of the
following access modifiers. protected, private oOr static.

7.7 Unique Package Names

Developers should take steps to avoid the possibility of two published packages
having the same name by choosing unique package names for packages that are
widely distributed. This alows packages to be easily and automatically installed

169

1.7

170

Unique Package Names PACKAGES

and catalogued. This section specifies a suggested convention for generating such
unique package names. Implementations of the Java platform are encouraged to
provide automatic support for converting a set of packages from local and casual
package names to the unique name format described here.

If unique package names are not used, then package name conflicts may arise
far from the point of creation of either of the conflicting packages. This may
create a situation that is difficult or impossible for the user or programmer to
resolve. The class ClassLoader can be used to isolate packages with the same
name from each other in those cases where the packages will have constrained
interactions, but not in away that is transparent to a naive program.

You form aunigue package name by first having (or belonging to an organiza-
tion that has) an Internet domain name, such as sun.com. You then reverse this
name, component by component, to obtain, in this example, com. sun, and use this
as a prefix for your package names, using a convention developed within your
organization to further administer package names.

In some cases, the internet domain name may not be a valid package name.
Here are some suggested conventions for dealing with these situations:

« If the domain name contains a hyphen, or any other specia character not
allowed in anidentifier (83.8), convert it into an underscore.

« If any of the resulting package name components are keywords (83.9) then
append underscore to them.

«If any of the resulting package name components start with a digit, or any
other character that is not allowed as an initia character of an identifier, have
an underscore prefixed to the component.

Such a convention might specify that certain directory hame components be
division, department, project, machine, or login names. Some possible examples:

com.sun.sunsoft.DOE

com.sun.java.jag.scrabble

com.apple.quicktime.v2

edu.cmu.cs.bovik.cheese

gov.whitehouse.socks.mousefinder

The first component of a unique package name is always written in all-lowercase
ASCII letters and should be one of the top level domain names, currently com,
edu, gov, miT1, net, org, or one of the English two-letter codes identifying coun-
tries as specified in 1SO Standard 3166, 1981. For more information, refer to the
documents stored at ftp://rs.internic.net/rfc, for example, rfc920.txt
and rfc1032. txt.

The name of a package is not meant to imply where the package is stored
within the Internet; for example, a package named edu.cmu.cs.bovik.cheese
is not necessarily abtainable from Internet address cmu. edu or from cs.cmu.edu

PACKAGES Unique Package Names

or from bovik.cs.cmu.edu. The suggested convention for generating unique
package namesis merely away to piggyback a package naming convention on top
of an existing, widely known unique name registry instead of having to create a
separate registry for package names.

1.7

171

7.7 Unique Package Names PACKAGES

172

CHAPTER 8

Classes

CLASS declarations define new reference types and describe how they are
implemented (88.1).

A nested class is any class whose declaration occurs within the body of
another class or interface. A top level classisaclassthat is not a nested class.

This chapter discusses the common semantics of all classes—top level (87.6)
and nested (including member classes (88.5, §9.5), local classes (814.3) and anon-
ymous classes (8§15.9.5)). Details that are specific to particular kinds of classes are
discussed in the sections dedicated to these constructs.

A named class may be declared abstract (88.1.1.1) and must be declared
abstract if it isincompletely implemented; such a class cannot be instantiated,
but can be extended by subclasses. A class may be declared final (§88.1.1.2), in
which case it cannot have subclasses. If aclassis declared public, then it can be
referred to from other packages. Each class except Object isan extension of (that
is, a subclass of) a single existing class (88.1.4) and may implement interfaces
(88.1.5). Classes may be generic, that is, they may declare type variables (84.4)
whose bindings may differ among different instances of the class.

Classes may be decorated with annotations (89.7) just like any other kind of
declaration.

The body of a class declares members (fields and methods and nested classes
and interfaces), instance and static initializers, and constructors (88.1.6). The
scope (86.3) of amember (88.2) isthe entire body of the declaration of the classto

173

174

Classes CLASSES

which the member belongs. Field, method, member class, member interface, and
constructor declarations may include the access modifiers (86.6) public, pro-
tected, or private. The members of aclass include both declared and inherited
members (88.2). Newly declared fields can hide fields declared in a superclass or
superinterface. Newly declared class members and interface members can hide
class or interface members declared in a superclass or superinterface. Newly
declared methods can hide, implement, or override methods declared in a super-
class or superinterface.

Field declarations (88.3) describe class variables, which are incarnated once,
and instance variables, which are freshly incarnated for each instance of the class.
A field may be declared final (88.3.1.2), in which case it can be assigned to only
once. Any field declaration may include an initializer.

Member class declarations (88.5) describe nested classes that are members of
the surrounding class. Member classes may be static, in which case they have
no access to the instance variables of the surrounding class; or they may be inner
classes (88.1.3).

Member interface declarations (88.5) describe nested interfaces that are mem-
bers of the surrounding class.

Method declarations (88.4) describe code that may be invoked by method
invocation expressions (815.12). A class method is invoked relative to the class
type; an instance method is invoked with respect to some particular object that is
an instance of aclasstype. A method whose declaration does not indicate how it is
implemented must be declared abstract. A method may be declared final
(88.4.3.3), in which case it cannot be hidden or overridden. A method may be
implemented by platform-dependent native code (88.4.3.4). A synchronized
method (88.4.3.6) automatically locks an object before executing its body and
automatically unlocks the object on return, asif by use of asynchronized state-
ment (814.19), thus allowing its activities to be synchronized with those of other
threads (817).

Method names may be overloaded (88.4.9).

Instance initializers (88.6) are blocks of executable code that may be used to
help initialize an instance when it is created (815.9).

Static initializers (88.7) are blocks of executable code that may be used to
help initialize a class.

Constructors (88.8) are similar to methods, but cannot be invoked directly by
a method call; they are used to initialize new class instances. Like methods, they
may be overloaded (§8.8.8).

CLASSES Class Modifiers

8.1 Class Declaration

A class declaration specifies a new named reference type. There are two kinds of
class declarations - normal class declarations and enum declarations:
ClassDeclaration:
Normal ClassDeclaration
EnumDeclaration

Normal ClassDeclaration:
ClassModifiersyy class ldentifier TypeParametersyp SUperop
Interfacesy,: ClassBody

Therulesin this section apply to all class declarations unless this specification
explicitly states otherwise. In many cases, special restrictions apply to enum dec-
larations. Enum declarations are described in detail in §8.9.

The Identifier in a class declaration specifies the name of the class. A com-
pile-time error occurs if a class has the same simple name as any of its enclosing
classes or interfaces.

8.1.1 ClassModifiers

A class declaration may include class modifiers.

ClassModifiers;
ClassModifier
ClassModifiers ClassModifier

ClassModifier: one of
Annotation public protected private
abstract static final strictfp

Not all modifiers are applicable to all kinds of class declarations. The access
modifier pub1ic pertains only to top level classes (§87.6) and to member classes
(885, 89.5), and is discussed in 86.6, §88.5 and §9.5. The access modifiers
protected and private pertain only to member classes within adirectly enclos-
ing class declaration (88.5) and are discussed in §8.5.1. The access modifier
stat1ic pertains only to member classes (88.5, §9.5). A compile-time error occurs
if the same modifier appears more than once in a class declaration.

If an annotation a on a class declaration corresponds to an annotation type T,
and T has a (meta-)annotation m that corresponds to annotation.Target, thenm
must have an element whose value is annotation.ElementType.TYPE, Or a
compile-time error occurs. Annotation modifiers are described further in §9.7.

811

175

811

176

Class Modifiers CLASSES

If two or more class modifiers appear in a class declaration, then it is custom-
ary, though not required, that they appear in the order consistent with that shown
above in the production for ClassModifier.

8.1.1.1 abstract Classes

An abstract classis a class that is incomplete, or to be considered incom-
plete. Normal classes may have abstract methods (88.4.3.1, §9.4), that is meth-
ods that are declared but not yet implemented, only if they are abstract classes.
If anormal classthat is not abstract contains an abstract method, then a com-
pile-time error occurs.

Enum types (88.9) must not be declared abstract; doing so will result in a
compile-time error. It is a compile-time error for an enum type E to have an
abstract method m as a member unless E has one or more enum constants, and all
of E's enum constants have class bodies that provide concrete implementations of
m. It isacompile-time error for the class body of an enum constant to declare an
abstract method.

A class C has abstract methodsif any of the following istrue:

» Cexplicitly contains adeclaration of an abstract method (88.4.3).

» Any of C's superclasses has an abstract method and C neither declares nor
inherits a method that implements (88.4.8.1) it.

» A direct superinterface (88.1.5) of C declares or inherits a method (which is
therefore necessarily abstract) and C neither declares nor inherits a method
that implementsiit.

In the example:

abstract class Point {
int x =1, y=1;
void move(int dx, int dy) {

X += dx;
y += dy;
alert();
3
abstract void alert();
}
abstract class ColoredPoint extends Point {
int color;
3

CLASSES Class Modifiers

class SimplePoint extends Point {
void alert() { }
3

aclass Point is declared that must be declared abstract, because it contains a
declaration of an abstract method named alert. The subclass of Point named
ColoredPoint inheritsthe abstract method alert, so it must also be declared
abstract. On the other hand, the subclass of Point named SimplePoint pro-
vides an implementation of alert, so it need not be abstract.

A compile-time error occurs if an attempt is made to create an instance of an
abstract class using aclassinstance creation expression (§15.9).

Thus, continuing the example just shown, the statement:

Point p = new Point();
would result in a compile-time error; the class Point cannot be instantiated
because it is abstract. However, a Point variable could correctly be initialized
with a reference to any subclass of Point, and the class SimplePoint is not
abstract, so the statement:

Point p = new SimplePoint();
would be correct.

A subclass of an abstract class that is not itself abstract may be instanti-
ated, resulting in the execution of a constructor for the abstract class and, there-
fore, the execution of the field initializersfor instance variables of that class. Thus,
in the example just given, instantiation of a SimplePoint causes the default con-
structor and field initidlizers for x and y of Point to be executed.

It is a compile-time error to declare an abstract class type such that it is not
possible to create a subclass that implements all of its abstract methods. This
situation can occur if the class would have as members two abstract methods
that have the same method signature (88.4.2) but incompatible return types.

As an example, the declarations:

interface Colorable { void setColor(int color); }

abstract class Colored implements Colorable {

abstract int setColor(int color);

}

result in a compile-time error: it would be impossible for any subclass of class
Colored to provide an implementation of a method named setCoTlor, taking one
argument of type int, that can satisfy both abstract method specifications,
because the one in interface Colorable requires the same method to return no
value, while the one in class Colored requires the same method to return avaue
of type int (88.4).

A class type should be declared abstract only if theintent is that subclasses
can be created to complete the implementation. If the intent is ssmply to prevent

811

177

8.12

178

Generic Classes and Type Parameters CLASSES

instantiation of a class, the proper way to express this is to declare a constructor
(88.8.10) of no arguments, make it private, never invoke it, and declare no other
constructors. A class of this form usually contains class methods and variables.
The classMath is an example of a class that cannot be instantiated; its declaration
lookslikethis:

public final class Math {

private Math() { } // never instantiate this class
... declarations of class variables and methods. . .

}

8.1.1.2 final Classes

A class can be declared final if its definition is complete and no subclasses are
desired or required. A compile-time error occurs if the name of a final class
appearsin the extends clause (88.1.4) of another c1ass declaration; thisimplies
that a final class cannot have any subclasses. A compile-time error occurs if a
classis declared both final and abstract, because the implementation of such a
class could never be completed (88.1.1.1).

Because a final class never has any subclasses, the methods of a final class
are never overridden (88.4.8.1).

8.1.1.3 strictfp Classes

The effect of the strictfp modifier isto make al float or double expressions
within the class declaration be explicitly FP-strict (815.4). This implies that all
methods declared in the class, and all nested types declared in the class, are
implicitly strictfp.

Note also that all float or double expressions within al variable initializ-
ers, instance initializers, static initializers and constructors of the classwill also be
explicitly FP-strict.

8.1.2 Generic Classesand Type Parameters

A classisgeneric if it declares one or more type variables (84.4). These type vari-
ables are known as the type parameters of the class. The type parameter section
follows the class name and is delimited by angle brackets. It defines one or more
type variables that act as parameters. A generic class declaration defines a set of
parameterized types, one for each possible invocation of the type parameter sec-
tion. All of these parameterized types share the same class at runtime.

CLASSES Generic Classes and Type Parameters

DiscussioN

For instance, executing the code
Vector<String> x = new Vector<String>(Q);
Vector<Integer> y = new Vector<Integer>(Q);
boolean b = x.getClass() == y.getClass();

will result in the variable b holding the value true.

TypeParameters ;.= < TypeParameterList >
TypeParameterList ::= TypeParameterList , TypeParameter
| TypeParameter

It is a compile-time error if a generic classis adirect or indirect subclass of
ThrowabTe.

DiscussioN

This restriction is needed since the catch mechanism of the Java virtual machine works
only with non-generic classes.

The scope of a class type parameter is the entire declaration of the class
including the type parameter section itself. Therefore, type parameters can appear
as parts of their own bounds, or as bounds of other type parameters declared in the
same section.

It isacompile-time error to refer to atype parameter of aclass C anywherein
the declaration of a static member of C or the declaration of a static member of
any type declaration nested within C. It is a compile-time error to refer to a type
parameter of aclass C within a static initializer of C or any class nested within C.

DiscussioN

Example: Mutually recursive type variable bounds.
interface ConvertibleTo<T> {

8.1.2

179

8.1.2 Generic Classes and Type Parameters CLASSES

T convert();

}

class ReprChange<T implements ConvertibleTo<S>,
S implements ConvertibleTo<T>> {
T t;
void set(S s) { t = s.convert(); }
S get() { return t.convert(Q); }

Parameterized class declarations can be nested inside other declarations.

DiscussioN

This is illustrated in the following example:
class Seq<T> {
T head;
Seqg<T> tail;
Seq() { this(null, null); }
boolean isEmpty() { return tail == null; }
Seq(T head, Seq<T> tail) { this.head = head; this.tail = tail; }

class Zipper<S> {
Seq<Pair<T,S>> zip(Seq<S> that) {
if (this.isEmpty() || that.isEmpty())
return new Seq<Pair<T,S>>(Q);
else
return new Seq<Pair<T,S>>(
new Pair<T,S>(this.head, that.head),
this.tail.zip(that.tail));

3
3
h
class Pair<T, S> {
T fst; S Snd;
Pair(T f, S s) {fst = f; snd = s;}
B

class Client {

{
Seq<String> strs =
new Seq<String>("a", new Seq<String>("b",
new Seq<String>(0)));
Seq<Number> nums =
new Seq<Number>(new Integer(l),

new Seq<Number>(new Double(1.5),

180

CLASSES Inner Classes and Enclosing Instances

new Seq<Number>()));
Seq<String>.Zipper<Number> zipper =
strs.new Zipper<Number>(Q);
Seqg<Pair<String,Number>> combined = zipper.zip(nums);

}

8.1.3 Inner Classes and Enclosing I nstances

An inner class is a nested class that is not explicitly or implicitly declared
static. Inner classes may not declare static initializers (88.7) or member inter-
faces. Inner classes may not declare static members, unless they are compile-time
constant fields (§15.28).
To illustrate these rules, consider the example below:
class HasStatic{
static int j = 100;
}
class Outer{
class Inner extends HasStatic{
static final int x = 3;// ok - compile-time constant
static int y = 4; // compile-time error, aninner class
}

static class NestedButNotInner{ _
static int z = 5; // ok, not aninner class
}

interface NeverInner{}// interfacesare never inner
}

Inner classes may inherit static members that are not compile-time constants even
though they may not declare them. Nested classes that are not inner classes may
declare static members freely, in accordance with the usual rules of the Java pro-
gramming language. Member interfaces (88.5) are aways implicitly static so they
are never considered to be inner classes.

A statement or expression occurs in a static context if and only if the inner-
most method, constructor, instance initializer, static initializer, field initializer, or
explicit constructor invocation statement enclosing the statement or expression is
astatic method, a static initializer, the variable initializer of a static variable, or an
explicit constructor invocation statement (88.8.7).

Aninner classc isadirect inner class of aclasso if 0 istheimmediately lex-
ically enclosing class of ¢ and the declaration of C does not occur in a static con-

8.1.3

181

8.1.3

182

Inner Classes and Enclosing Instances CLASSES

text. A classc isaninner class of class 0 if it is either adirect inner class of 0 or
an inner class of an inner class of 0.

A class 0 is the zeroth lexically enclosing class of itself. A class 0 is the nth
lexically enclosing class of a class C if it is the immediately enclosing class of the
n—1¢st lexicaly enclosing class of C.

An instance i of a direct inner class C of a class 0 is associated with an
instance of 0, known as the immediately enclosing instance of i. The immediately
enclosing instance of an object, if any, is determined when the object is created
(815.9.2).

An object o is the zeroth lexically enclosing instance of itself. An object o is
the nth lexically enclosing instance of an instance i if it is the immediately
enclosing instance of the » -1 st lexically enclosing instance of i.

When an inner class refers to an instance variable that is a member of alexi-
caly enclosing class, the variable of the corresponding lexically enclosing
instance is used. A blank final (84.12.4) field of a lexically enclosing class may
not be assigned within an inner class.

An instance of an inner class I whose declaration occurs in a static context
has no lexically enclosing instances. However, if I isimmediately declared within
a static method or static initializer then 1 does have an enclosing block, which is
the innermost block statement lexically enclosing the declaration of 1.

Furthermore, for every superclass s of ¢ whichisitself adirect inner class of a
class so, there is an instance of S0 associated with i, known as the immediately
enclosing instance of i with respect to S. The immediately enclosing instance of an
object with respect to its class' direct superclass, if any, is determined when the
superclass constructor isinvoked viaan explicit constructor invocation statement.

Any local variable, forma method parameter or exception handler parameter
used but not declared in an inner class must be declared final. Any local vari-
able, used but not declared in an inner class must be definitely assigned (816)
before the body of theinner class.

Inner classesinclude local (§14.3), anonymous (815.9.5) and non-static mem-
ber classes (88.5). Here are some examples:

class Outer {

int i = 100;
static void classMethod() {
final int T = 200;

class LocalInStaticContext{
int k = i; // compile-time error
intm=1; // ok

CLASSES Inner Classes and Enclosing Instances

void foo() {
class Local { // alocd class
int j = 1;
}

}

The declaration of class LocalInStaticContext Occursin astatic context—
within the static method classMethod. Instance variables of class Outer are not
available within the body of a static method. In particular, instance variables of
Outer are not available inside the body of LocalInStaticContext. However,
local variables from the surrounding method may be referred to without error
(provided they are marked final).

Inner classes whose declarations do not occur in a static context may freely
refer to the instance variables of their enclosing class. An instance variable is
always defined with respect to an instance. In the case of instance variables of an
enclosing class, the instance variable must be defined with respect to an enclosing
instance of that class. So, for example, the class Local above has an enclosing
instance of classOuter. As afurther example:

class WithDeepNesting{
boolean toBe;

WithDeepNesting(boolean b) { toBe = b;}

class Nested {
boolean theQuestion;
class DeeplyNested {
DeeplyNested() {
theQuestion = toBe || !toBe;

}

}

Here, every instance of WithDeepNesting.Nested.DeeplyNested has an
enclosing instance of class WithDeepNesting.Nested (its immediately enclos-
ing instance) and an enclosing instance of class WithDeepNesting (its 2nd lexi-
cally enclosing instance).

8.1.3

183

8.14

184

Superclasses and Subclasses CLASSES

8.1.4 Superclasses and Subclasses

The optional extends clause in a normal class declaration specifies the direct
superclass of the current class.

Super:
extends ClassType

Thefollowing is repeated from 84.3 to make the presentation here clearer:

ClassType:
TypeDecl Soecifier TypeArgumentsopt

A classissaid to be adirect subclass of its direct superclass. The direct super-
class is the class from whose implementation the implementation of the current
class is derived. The direct superclass of an enum type E is Enum<E>. The
extends clause must not appear in the definition of the classObject, becauseitis
the primordial class and has no direct superclass.

Given a (possibly generic) class declaration for C<Fq, ..., Fn>, 120,
C = Object , the direct superclass of the classtype (84.5) C<F1, - - ., Fn> isthetype
given in the extends clause of the declaration of C if an extends clause is present,
or Object otherwise.

LetC<Fq,...,Fy>, n>0, beageneric class declaration. The direct superclass
of the parameterized class type C<T1,...,Tp> , Where T, 1<i<n, isatype is
D<U; theta , ..., Uk theta>, whereD<Uq,-.., U is the direct superclass of
C<F1,---, Fn>, and theta is the substitution [F1 :=Tq, ..., Fq := Tnl.

The ClassType must name an accessible (86.6) class type, or a compile-time
error occurs. If the specified ClassType names a class that is final (88.1.1.2),
then a compile-time error occurs; final classes are not alowed to have sub-
classes. It is a compile-time error if the ClassType names the class Enum or any
invocation of it. If the TypeName is followed by any type arguments, it must be a
correct invocation of the type declaration denoted by TypeName, and none of the
type arguments may be wildcard type arguments, or a compile-time error occurs.

In the example:

class Point { int x, y; }
final class ColoredPoint extends Point { int color; }

class Colored3DPoint extends ColoredPoint { int z; } // error
the relationships are as follows:

* Theclass Point isadirect subclass of Object.
» The classObject isthe direct superclass of the class Point.
» The class ColoredPoint isadirect subclass of classPoint.

CLASSES Superclasses and Subclasses

» The class Point isthe direct superclass of class ColoredPoint.

The declaration of class Colored3dPoint causes a compile-time error because it
attempts to extend the final class ColoredPoint.

The subclass relationship is the transitive closure of the direct subclass rela-
tionship. A classA isasubclass of classcC if either of the following is true:

* Aisthedirect subclassof C.

» There exists aclass B such that A is a subclass of B, and B is a subclass of C,
applying this definition recursively.

ClassC issaid to be a superclass of class A whenever A isasubclass of C.
In the example:
class Point { int x, y; }
class ColoredPoint extends Point { int color; }

final class Colored3dPoint extends ColoredPoint { int z; }
the relationships are as follows:

* The class Point isasuperclass of class ColoredPoint.

* Theclass Point isasuperclass of class Colored3dPoint.

* The class ColoredPoint isasubclass of class Point.

* The class ColoredPoint isasuperclass of class Colored3dPoint.
» The class Colored3dPoint isasubclass of class ColoredPoint.

* Theclass Colored3dPoint isasubclass of class Point.

A classc directly dependson atype T if T ismentioned in the extends or imple-
ments clause of C either as a superclass or superinterface, or as a qualifier of a
superclass or superinterface name. A class C depends on a reference type T if any
of the following conditions hold:

 Cdirectly dependsonT.
* C directly depends on an interface 1 that depends (89.1.3) on T.
* C directly depends on aclass D that depends on T (using this definition recur-
sively).
It isacompile-time error if aclass depends on itself.
For example:

class Point extends ColoredPoint { int x, y; }
class ColoredPoint extends Point { int color; }

814

185

8.1.5

186

Superinterfaces CLASSES

causes a compile-time error.
If circularly declared classes are detected at run time, as classes are loaded
(812.2), thenaClassCircularityError isthrown.

8.1.5 Superinterfaces

The optional implements clause in a class declaration lists the names of inter-
faces that are direct superinterfaces of the class being declared:

Interfaces:
implements InterfaceTypelist

InterfaceTypelist:
InterfaceType
InterfaceTypelist , InterfaceType

The following is repeated from §4.3 to make the presentation here clearer:

InterfaceType:
TypeDecl Soecifier TypeArgumentsyp
Given a (possibly generic) class declaration for C<Fq,..., Fr>, n20,
C = Object , the direct superinterfaces of the class type (84.5) C<F4, ..., Fn> are

the types given in the implements clause of the declaration of C if an implements
clauseis present.

Let C<Fq,..., Fn>, n>0, be a generic class declaration. The direct super-
interfaces of the parameterized classtype C<T4, - . -, Tn>,WhereTj, 1<i<n,isa
type, are dll types 1<Uq theta , ..., Uk theta>, where I<Uq, ..., U> is a
direct superinterface of C<Fq, ..., Fn>, and theta is the substitution [Fq = Ty, ...,
Fn:=Thl.

Each InterfaceType must name an accessible (86.6) interface type, or a com-
pile-time error occurs. If the TypeNameisfollowed by any type arguments, it must
be a correct invocation of the type declaration denoted by TypeName, and none of
the type arguments may be wildcard type arguments, or a compile-time error
OCCUrs.

A compile-time error occurs if the same interface is mentioned as a direct
superinterface two or moretimesin asingle implements clause names.

This istrue even if the interface is named in different ways, for example, the
code:

class Redundant implements java.lang.Cloneable, Cloneable {
int x;

}

CLASSES SQuperinterfaces 8.1.5

results in a compile-time error because the names java.lang.Cloneable and
Cloneable refer to the same interface.

An interface type I is a superinterface of classtype C if any of the following
istrue:

1 isadirect superinterface of C.

* C has some direct superinterface J for which 1 is a superinterface, using the
definition of “superinterface of an interface” givenin §9.1.3.

* 1 isasuperinterface of the direct superclass of C.

A classissaid to implement al its superinterfaces.
In the example:
public interface Colorable {

void setColor(int color);
int getColor(Q);
}

pubTic enum Finish {MATTE, GLOSSY}

public interface Paintable extends Colorable {
void setFinish(Finish finish);
Finish getFinish(Q);

3

class Point { int x, y; }

class ColoredPoint extends Point implements Colorable {

int color;

public void setColor(int color) { this.color = color; }

public int getColor() { return color; }
3
class PaintedPoint extends ColoredPoint implements Paintable
{

Finish finish;

public void setFinish(Finish finish) {

this.finish = finish;
}
public Finish getFinish() { return finish; }

}
the relationships are as follows:
* Theinterface Paintable isasuperinterface of class PaintedPoint.

* The interface Colorable is a superinterface of class ColoredPoint and of
classPaintedPoint.

187

8.1.5

188

Superinterfaces CLASSES

* The interface Paintable is a subinterface of the interface Colorable, and
Colorable isasuperinterface of Paintable, asdefinedin §9.1.3.

A class can have a superinterface in more than one way. In this example, the
class PaintedPoint has Colorable as a superinterface both because it is a
superinterface of ColoredPoint and because it is a superinterface of Paintable.
Unless the class being declared is abstract, the declarations of all the method
members of each direct superinterface must be implemented either by a declara-
tion in this class or by an existing method declaration inherited from the direct
superclass, because a class that is not abstract is not permitted to have
abstract methods (88.1.1.1).

Thus, the example:

interface Colorable {

void setColor(int color);
int getColor(Q);
}

class Point { int x, y; };

class ColoredPoint extends Point implements Colorable {
int color;

}
causes a compile-time error, because ColoredPoint isnot an abstract class but
it fails to provide an implementation of methods setColor and getColor of the
interface Colorable.

It is permitted for asingle method declaration in aclass to implement methods
of more than one superinterface. For example, in the code:

interface Fish { int getNumberOfScales(); }
interface Piano { int getNumberOfScales(); }

class Tuna implements Fish, Piano {

// You can tune apiano, but can you tunafish?
int getNumberOfScales() { return 91; }

}

the method getNumberOfScales in class Tuna has a name, signature, and return
type that matches the method declared in interface Fish and also matches the
method declared in interface Piano; it is considered to implement both.

On the other hand, in a situation such as this:

interface Fish { int getNumberOfScales(); }
interface StringBass { double getNumberOfScales(); }

class Bass implements Fish, StringBass {
// This declaration cannot be correct, no matter what typeis used.

CLASSES Class Body and Member Declarations 8.1.6

public ??? getNumberOfScales() { return 91; }
}

It isimpossible to declare a method named getNumber0fScales whose signature
and return type are compatible with those of both the methods declared in inter-
face Fish and in interface StringBass, because a class cannot have multiple
methods with the same signature and different primitive return types (88.4).
Therefore, it isimpossible for asingle class to implement both interface Fish and
interface StringBass (88.4.8).

A class may not at the same time be a subtype of two interface types which
are different invocations of the same generic interface (89.1.2), or an invocation of
ageneric interface and araw type naming that same generic interface.

DiscussioN

Here is an example of an illegal multiple inheritance of an interface:
class B implements I<Integer>
class C extends B implements I<String>

This requirement was introduced in order to support translation by type erasure (84.6).

8.1.6 ClassBody and Member Declarations

A class body may contain declarations of members of the class, that is, fields
(88.3), classes (88.5), interfaces (88.5) and methods (88.4). A class body may also
contain instance initializers (88.6), static initializers (88.7), and declarations of
constructors (88.8) for the class.

ClassBody:
{ ClassBodyDeclarationsy, }

ClassBodyDeclarations:
ClassBodyDeclaration
ClassBodyDeclarations ClassBodyDeclaration

ClassBodyDeclaration:
ClassMemberDeclaration
Instancel nitializer
Saticlnitializer
ConstructorDeclaration

189

8.2

190

Class Members CLASSES

ClassMember Declaration:
FieldDeclaration
MethodDeclaration
ClassDeclaration
InterfaceDeclaration

The scope of a declaration of a member m declared in or inherited by a class
type C isthe entire body of c, including any nested type declarations.

If C itself isanested class, there may be definitions of the same kind (variable,
method, or type) and name as m in enclosing scopes. (The scopes may be blocks,
classes, or packages.) In all such cases, the member m declared or inherited in C
shadows (86.3.1) the other definitions of the same kind and name.

8.2 ClassMembers

The members of aclasstype are al of the following:

» Membersinherited from its direct superclass (88.1.4), except in class Object,
which has no direct superclass

» Membersinherited from any direct superinterfaces (88.1.5)
» Members declared in the body of the class (88.1.6)
Members of aclass that are declared private are not inherited by subclasses
of that class. Only members of aclassthat are declared protected or public are
inherited by subclasses declared in a package other than the one in which the class

is declared.
We use the phrase the type of a member to denote:

» For afield, itstype.

» For amethod, an ordered 3-tuple consisting of:

o argument types: alist of the types of the arguments to the method member.
o return type: the return type of the method member and the

o throws clause: exception types declared in the throws clause of the method
member.

CLASSES Class Members

Constructors, static initializers, and instance initializers are not members and
therefore are not inherited.
The example:

class Point {
int x, y;
private Point() { reset(); }
Point(int x, int y) { this.x = x; this.y = vy; }
private void reset() { this.x = 0; this.y = 0; }

}
class ColoredPoint extends Point {

int color;

void clear() { reset(); } // €ror
}

class Test {

public static void main(String[] args) {
ColoredPoint ¢ = new ColoredPoint(0, 0);// error
c.reset(); // error

}
causes four compile-time errors:

» An error occurs because ColoredPoint has no constructor declared with two
integer parameters, as requested by the use in main. This illustrates the fact
that ColoredPoint does not inherit the constructors of its superclass Point.

» Another error occurs because ColoredPoint declares no constructors, and
therefore a default constructor for it is automatically created (88.8.9), and this
default constructor is equivalent to:

ColoredPoint() { super(Q); 1}

which invokes the constructor, with no arguments, for the direct superclass of
theclassColoredPoint. Theerror isthat the constructor for Point that takes
no argumentsis private, and therefore is not accessible outside the class
Point, even through a superclass constructor invocation (88.8.7).

Two more errors occur because the method reset of class Point isprivate, and
therefore is not inherited by class ColoredPoint. The method invocations in
method clear of class ColoredPoint and in method main of class Test are
therefore not correct.

8.2

191

821

192

Examples of Inheritance CLASSES

8.2.1 Examplesof Inheritance

This section illustrates inheritance of class members through several examples.

8.2.1.1 Example: Inheritance with Default Access

Consider the example where the points package declares two compilation units:
package points;

public class Point {

int x, y;
public void move(int dx, int dy) { x += dx; y += dy; }
}

and:
package points;
public class Point3d extends Point {
int z;
public void move(int dx, int dy, int dz) {
X += dx; y += dy; z += dz;
}

3
and athird compilation unit, in another package, is:
import points.Point3d;

class Point4d extends Point3d {
int w;
public void move(int dx, int dy, int dz, int dw) {
X += dx; y += dy; z += dz; w += dw; // compile-timeerrors
3

}

Here both classesin the points package compile. The class Point3d inherits the
fields x and y of class Point, because it is in the same package as Point. The
class Point4d, which isin adifferent package, does not inherit the fields x and y
of class Point or thefield z of class Point3d, and so failsto compile.

A better way to write the third compilation unit would be:

import points.Point3d;

class Point4d extends Point3d {
int w;
public void move(int dx, int dy, int dz, int dw) {
super.move(dx, dy, dz); w += dw;

}

CLASSES Examples of Inheritance

using the move method of the superclass Point3d to process dx, dy, and dz. If
Point4d iswritten in thisway it will compile without errors.

8.2.1.2 Inheritance with pub1ic and protected

GiventheclassPoint:
package points;
public class Point {
public int x, y;
protected int useCount = 0;
static protected int totalUseCount = 0;

pubTic void move(int dx, int dy) {
X += dx; y += dy; useCount++; totalUseCount++;
}
}

the pub1ic and protected fields x, y, useCount and totalUseCount are inher-
ited in all subclasses of Point.

Therefore, this test program, in another package, can be compiled success-
fully:

class Test extends points.Point {

public void moveBack(int dx, int dy) {
X -= dx; y -= dy; useCount++; totalUseCount++;
}

8.2.1.3 Inheritance with private

In the example:
class Point {
int x, y;

void move(int dx, int dy) {
X += dx; y += dy; totalMoves++;

3
private static int totalMoves;
void printMoves() { System.out.printin(totalMoves); }

821

193

821

194

Examples of Inheritance CLASSES

class Point3d extends Point {
int z;
void move(int dx, int dy, int dz) {
super.move(dx, dy); z += dz; totalMoves++;

}
}

the class variable totalMoves can be used only within the class Point; it is not
inherited by the subclass Point3d. A compile-time error occurs because method
move of class Point3d triesto increment totalMoves.

8.2.1.4 Accessing Members of Inaccessible Classes

Even though a class might not be declared pub11 ¢, instances of the class might be
available at run time to code outside the package in which it is declared by means
apublic superclass or superinterface. An instance of the class can be assigned to
avariable of such apub1ic type. Aninvocation of apub1ic method of the object
referred to by such avariable may invoke a method of the class if it implements or
overrides a method of the pub1ic superclass or superinterface. (In this situation,
the method is necessarily declared pub1ic, even though it is declared in a class
that isnot pub1ic.)
Consider the compilation unit:

package points;

public class Point {
public int x, y;
public void move(int dx, int dy) {
X += dx; y += dy;
3
3

and another compilation unit of another package:

package morePoints;

class Point3d extends points.Point {
public int z;
public void move(int dx, int dy, int dz) {
super.move(dx, dy); z += dz;

public void move(int dx, int dy) {
move(dx, dy, 0);
}

CLASSES Examples of Inheritance

public class OnePoint {

public static points.Point getOne() {
return new Point3d(Q);
}

An invocation morePoints.0OnePoint.getOne() in yet a third package would
return a Point3d that can be used as a Point, even though the type Point3d is
not available outside the package morePoints. The two argument version of
method move could then be invoked for that object, which is permissible because
method move of Point3d ispublic (asit must be, for any method that overrides a
pub1ic method must itself be pub1i ¢, precisely so that situations such as thiswill
work out correctly). The fields x and y of that object could also be accessed from
such athird package.

While the field z of class Point3d ispublic, it isnot possible to access this
field from code outside the package morePoints, given only a reference to an
instance of class Point3d in a variable p of type Point. This is because the
expression p.z is not correct, as p has type Point and class Point has no field
named z; also, the expression ((Point3d)p) .z is not correct, because the class
type Point3d cannot be referred to outside package morePoints.

The declaration of the field z as pub1i c is not useless, however. If there were
to be, in package morePoints, apublic subclass Point4d of the class Point3d:

package morePoints;

public class Point4d extends Point3d {
public int w;
public void move(int dx, int dy, int dz, int dw) {
super.move(dx, dy, dz); w += dw;
3

then class Point4d would inherit the field z, which, being pub1i ¢, could then be
accessed by code in packages other than morePoints, through variables and
expressions of the pub1ic type Point4d.

821

195

8.3

196

Field Declarations CLASSES

8.3 Fidld Declarations

The variables of aclass type are introduced by field declarations:

FieldDeclaration:
FieldModifiersyy Type VariableDeclarators ;

VariableDeclarators;
VariableDeclarator
VariableDeclarators , VariableDeclarator

VariableDeclarator:
VariableDeclarator|d
VariableDeclaratorld = Variablelnitializer

VariableDeclarator|d:
Identifier
VariableDeclaratorld []

Variablelnitializer:
Expression
Arraylnitializer

The FieldModifiers are described in §8.3.1. The Identifier in a FieldDeclarator
may be used in a name to refer to the field. Fields are members; the scope (86.3)
of afield declaration is specified in §8.1.6. More than one field may be declared in
a single field declaration by using more than one declarator; the FieldModifiers
and Type apply to al the declarators in the declaration. Variable declarations
involving array types are discussed in §10.2.

It is a compile-time error for the body of a class declaration to declare two
fields with the same name. Methods, types, and fields may have the same name,
since they are used in different contexts and are disambiguated by different lookup
procedures (86.5).

If the class declares a field with a certain name, then the declaration of that
field is said to hide any and all accessible declarations of fields with the same
name in superclasses, and superinterfaces of the class. The field declaration aso
shadows (86.3.1) declarations of any accessible fields in enclosing classes or
interfaces, and any local variables, formal method parameters, and exception han-
dler parameters with the same name in any enclosing blocks.

CLASSES Field Modifiers

If afield declaration hides the declaration of another field, the two fields need
not have the same type.

A class inherits from its direct superclass and direct superinterfaces all the
non-private fields of the superclass and superinterfaces that are both accessible to
code in the class and not hidden by a declaration in the class.

Note that a private field of a superclass might be accessible to a subclass (for
example, if both classes are members of the same class). Nevertheless, a private
field is never inherited by a subclass.

It is possible for a class to inherit more than one field with the same name
(88.3.3.3). Such asituation does not in itself cause a compile-time error. However,
any attempt within the body of the class to refer to any such field by its smple
name will result in a compile-time error, because such areference is ambiguous.

There might be severa paths by which the same field declaration might be
inherited from an interface. In such a situation, the field is considered to be inher-
ited only once, and it may be referred to by its simple name without ambiguity.

A hidden field can be accessed by using a qualified name (if it is static) or
by using a field access expression (§15.11) that contains the keyword super or a
cast to asuperclass type. See §15.11.2 for discussion and an example.

A vaue stored in afield of type float is aways an element of the float value
set (84.2.3); similarly, a value stored in afield of type double is always an ele-
ment of the double value set. It is not permitted for afield of type float to contain
an element of the float-extended-exponent value set that is not also an element of
the float value set, nor for afield of type double to contain an element of the dou-
ble-extended-exponent value set that is not also an element of the double value
Set.

8.3.1 Field Modifiers

FieldModifiers:
FieldModifier
FieldModifiers FieldModifier

FieldModifier: one of
Annotation public protected private
static final transient volatile

The access modifiers public, protected, and private are discussed in 86.6. A
compile-time error occurs if the same modifier appears more than once in afield
declaration, or if a field declaration has more than one of the access modifiers
public, protected, and private.

If an annotation a on afield declaration corresponds to an annotation type T,
and T has a (meta-)annotation m that corresponds to annotation.Target, thenm

831

197

831

198

Field Modifiers CLASSES

must have an element whose value is annotation.ElementType.FIELD, or a
compile-time error occurs. Annotation modifiers are described further in §9.7.

If two or more (distinct) field modifiers appear in afield declaration, it is cus-
tomary, though not required, that they appear in the order consistent with that
shown above in the production for FieldModifier.

83.1.1 static Fidds

If afield is declared static, there exists exactly one incarnation of the field, no
matter how many instances (possibly zero) of the class may eventually be created.
A static field, sometimes called a class variable, isincarnated when the classis
initialized (812.4).

A field that is not declared static (sometimes called a non-static field) is
caled an instance variable. Whenever a new instance of aclassis created, a new
variable associated with that instance is created for every instance variable
declared in that class or any of its superclasses. The example program:

class Point {

int x, y, useCount;
Point(int x, int y) { this.x = x; this.y = vy; }
final static Point origin = new Point(0, 0);

}

class Test {
public static void main(String[] args) {

Point p = new Point(1,1);
Point g = new Point(2,2);
p.x = 3; p.y = 3; p.useCount++; p.origin.useCount++;
System.out.printIn("(" + g.x + "," + q.y + ")");
System.out.printin(q.useCount);
System.out.printin(g.origin == Point.origin);
System.out.printin(qg.origin.useCount);
3
}
prints:
2,2)
0
true
1

showing that changing the fields x, y, and useCount of p does not affect the fields
of q, because thesefields are instance variables in distinct objects. In this example,
the class variable origin of the class Point is referenced both using the class
name as a qualifier, in Point.origin, and using variables of the class type in
field access expressions (§15.11), asinp.origin and q.origin. These two ways

CLASSES Field Modifiers

of accessing the origin class variable access the same object, evidenced by the
fact that the value of the reference equality expression (815.21.3):
g.origin==Point.origin
is true. Further evidence is that the incrementation:
p.origin.useCount++;
causesthevaueof g.origin.useCount tobe1; thisisso becausep.origin and
g.origin refer to the same variable.

8.3.1.2 final Fields

A field can be declared final (84.12.4). Both class and instance variables
(static and non-static fields) may be declared final.

It isacompile-time error if ablank final (84.12.4) class variable is not defi-
nitely assigned (816.8) by a static initializer (88.7) of the class in which it is
declared.

A blank final instance variable must be definitely assigned (816.9) at the end
of every constructor (88.8) of the classin which it is declared; otherwise a com-
pile-time error occurs.

8.3.1.3 transient Fields

Variables may be marked transient to indicate that they are not part of the per-
sistent state of an object.
If an instance of the class Point:
class Point {
int x, y;
transient float rho, theta;

}

were saved to persistent storage by a system service, then only the fields x and y
would be saved. This specification does not specify details of such services; see
the specification of java.io.Serializable for an example of such aservice.

83.1.4 volatile Fidds

As described in 817, the Java programming language alows threads to access
shared variables. As arule, to ensure that shared variables are consistently and
reliably updated, athread should ensure that it has exclusive use of such variables
by obtaining a lock that, conventionaly, enforces mutual exclusion for those
shared variables.

The Java programming language provides a second mechanism, volatile
fields, that is more convenient than locking for some purposes.

831

199

831

200

Field Modifiers CLASSES

A field may be declared volatile, in which case the Java memory model
(817) ensuresthat all threads see a consistent value for the variable.

If, in the following example, one thread repeatedly calls the method one (but
no more than Integer.MAX_VALUE times in all), and another thread repeatedly
calls the method two:

class Test {

static int i = 0, j = 0;
static void one() { i++; j++; }

static void two() {
System.out.println("i='

AR O F
}
}

then method two could occasionally print a value for j that is greater than the
value of i, because the example includes no synchronization and, under the rules
explained in 817, the shared values of i and j might be updated out of order.

One way to prevent this out-or-order behavior would be to declare methods
one and two to be synchronized (§8.4.3.6):

class Test {

static int i = 0, j = 0;
static synchronized void one() { i++; j++; }

static synchronized void two() {
System.out.printin("i="

}

R Ok

}

This prevents method one and method two from being executed concurrently, and
furthermore guarantees that the shared values of i and j are both updated before
method one returns. Therefore method two never observes a value for j greater
than that for 1; indeed, it aways observes the same value for i and j.

Another approach would beto declare i and j to bevolatile:

class Test {

static volatile int i =0, j = 0;

static void one() { i++; j++; }
static void two() {

System.out.println("i='
3

IR S OF

}

This allows method one and method two to be executed concurrently, but
guarantees that accesses to the shared values for i and j occur exactly as many

CLASSES Initialization of Fields

times, and in exactly the same order, as they appear to occur during execution of
the program text by each thread. Therefore, the shared value for j is never greater
than that for 1, because each update to i must be reflected in the shared value for
i before the update to j occurs. It is possible, however, that any given invocation
of method two might observe a value for j that is much greater than the value
observed for i, because method one might be executed many times between the
moment when method two fetches the value of i and the moment when method
two fetchesthe value of j.

See 817 for more discussion and examples.

A compile-time error occursif afinal variableis also declared volatile.

8.3.2 Initialization of Fields

If afield declarator contains a variable initializer, then it has the semantics of an
assignment (815.26) to the declared variable, and:

« If the declarator is for aclass variable (that is, a static field), then the vari-
ableinitializer is evaluated and the assignment performed exactly once, when
the classisinitialized (812.4).

* If the declarator isfor an instance variable (that is, afield that is not static),
then the variable initializer is evaluated and the assignment performed each
time an instance of the classis created (§12.5).

The example:
class Point {
int x =1, y = 5;
3
class Test {

public static void main(String[] args) {
Point p = new Point(Q);

System.out.printin(p.x + ", " + p.y);
}
}
produces the output:
1, 5

because the assignments to x and y occur whenever anew Point is created.

Variable initidlizers are also used in loca variable declaration statements
(814.4), where theinitializer is evaluated and the assignment performed each time
the local variable declaration statement is executed.

8.3.2

201

832

202

Initialization of Fields CLASSES

Itisacompile-timeerror if the evaluation of avariableinitializer for astatic
field of a named class (or of an interface) can complete abruptly with a checked
exception (811.2).

It is compile-time error if an instance variable initializer of a named class can
throw a checked exception unless that exception or one of its supertypesis explic-
itly declared in the throws clause of each constructor of its class and the class has
at least one explicitly declared constructor. An instance variable initializer in an
anonymous class (815.9.5) can throw any exceptions.

8.3.2.1 Initializersfor Class Variables

If areference by simple name to any instance variable occurs in an initialization
expression for a class variable, then a compile-time error occurs.

If the keyword this (815.8.3) or the keyword super (815.11.2, §15.12)
occurs in an initialization expression for a class variable, then a compile-time
error occurs.

One subtlety hereisthat, at run time, static variablesthat are final and that
are initialized with compile-time constant values are initialized first. This aso
applies to such fields in interfaces (89.3.1). These variables are “constants’ that
will never be observed to have their default initial values (84.12.5), even by devi-
ous programs. See §12.4.2 and §13.4.9 for more discussion.

Use of class variables whose declarations appear textually after the use is
sometimes restricted, even though these class variables are in scope. See §8.3.2.3
for the precise rules governing forward reference to class variables.

8.3.2.2 Initializersfor Instance Variables

Initialization expressions for instance variables may use the simple name of any
static variable declared in or inherited by the class, even one whose declaration
occurs textually later.
Thus the example:
class Test {
float f = j;
static int j = 1;
}
compiles without error; it initializes j to 1 when class Test isinitialized, and ini-
tializes f to the current value of j every time an instance of class Test is created.
Initialization expressions for instance variables are permitted to refer to the
current object this (815.8.3) and to use the keyword super (815.11.2, 815.12).

CLASSES Initialization of Fields 8.3.2

Use of instance variables whose declarations appear textually after the useis
sometimes restricted, even though these instance variables are in scope. See
88.3.2.3 for the precise rules governing forward reference to instance variables.

8.3.2.3 Restrictions on the use of Fields during Initialization

The declaration of amember needs to appear textually beforeit isused only if
the member is an instance (respectively static) field of aclass or interface ¢ and
al of the following conditions hold:

» The usage occurs in an instance (respectively static) variableinitializer of C
or in an instance (respectively static) initializer of C.

» The usage is not on the left hand side of an assignment.
» The usageisviaasimple name.

 Cistheinnermost class or interface enclosing the usage.

A compile-time error occurs if any of the four requirements above are not
met.
This means that a compile-time error results from the test program:
class Test {
int i = j;// compile-time error: incorrect forward reference
int j 1;
}
whereas the following example compiles without error:
class Test {
TestO) { k =2; }

int j = 1;
int i = j;
int k;

}

even though the constructor (88.8) for Test refers to the field k that is declared
three lines later.

These restrictions are designed to catch, at compile time, circular or otherwise
malformed initializations. Thus, both:

class Z {

static int i = j + 2;
static int j = 4;
}
and:
class Z {

static { i =3j + 2; }

203

8.3.2 Initialization of Fields CLASSES

static int i, j;
static { j = 4; }

}
result in compile-time errors. Accesses by methods are not checked in this way,
SO:
class Z {
static int peek() { return j; }
static int i = peek();
static int j = 1;

}

class Test {

public static void main(String[] args) {
System.out.println(Z.i);

}
3
produces the output:
0

because the variable initializer for i uses the class method peek to access the
value of the variable j before j has been initialized by its variable initializer, at
which point it still hasits default value (84.12.5).

A more elaborate exampleis:

class UseBeforeDeclaration {

static {
x = 100; // ok - assignment

int y = x + 1; // error - read before declaration
int v = x = 3; // ok-xatleft hand side of assignment
int z = UseBeforeDeclaration.x * 2;

// oK - not accessed via simple name
Object o = new Object(){
void foo(){x++;} // ok -occursin adifferent class
{x++;3} // ok -occursinadifferent class
}s

j 200; // ok - assignment
j j 1; // error - right hand side reads before declaration
int k = j j o+ 1;
int n = j = 300; // ok -j atleft hand side of assignment
int h = j++; // error - read before declaration
int 1T = this.j * 3; // ok- not accessed viasimple name
Object o = new Object(){
void foo(){j++;} // ok-occursinadifferent class
{j=3+1;} // ok-occursinadifferent class

+

204

CLASSES Examples of Field Declarations

};
}
int w = x = 3; // ok-xatleft hand side of assignment
int p = x; // ok-instanceinitializers may access static fields

static int u = (new Object(Q{int bar(Q{return x;}}).barQ;
// Ok - occursin adifferent class

static int x;

intm=j = 4; // ok-jatleft hand side of assignment

int o = (new ObjectQ{int barQ{return j;}}).barQ;

// ok - occursin adifferent class

int j;

8.3.3 Examplesof Field Declarations

The following examples illustrate some (possibly subtle) points about field decla-
rations.

8.3.3.1 Example: Hiding of Class Variables

The example:
class Point {
static int x = 2;
}
class Test extends Point {

static double x = 4.7;

public static void main(String[] args) {
new Test().printX(Q;

}

void printX() {
System.out.printin(x +
3

+ super.x);

}

produces the output:

4.7 2
because the declaration of x in class Test hides the definition of x in class Point,
S0 class Test does not inherit the field x from its superclass Point. Within the
declaration of class Test, the simple name x refers to the field declared within
classTest. Codein class Test may refer to the field x of class Point assuper.x
(or, because x isstatic, asPoint.x). If the declaration of Test.x is deleted:

class Point {

static int x = 2;

}

8.3.3

205

8.3.3 Examples of Field Declarations CLASSES

class Test extends Point {

public static void main(String[] args) {
new Test().printX(Q;
}

void printX({
System.out.printin(x +
}

+ super.x);

}

then the field x of class Point is no longer hidden within class Test; instead, the

simple name x now refersto the field Point.x. Codein class Test may still refer

to that same field as super. x. Therefore, the output from this variant program is:
2 2

8.3.3.2 Example: Hiding of Instance Variables

This example is similar to that in the previous section, but uses instance variables
rather than static variables. The code:
class Point {
int x = 2;

}

class Test extends Point {
double x = 4.7;
void printBoth() {
System.out.printin(x +
}

public static void main(String[] args) {
Test sample = new Test();
sample.printBoth();
System.out.printin(sample.x + " " +
((Point)sample).x);

+ super.x);

}

produces the output:
4.7 2
4.7 2

because the declaration of x in class Test hides the definition of x in class Point,
S0 class Test does not inherit the field x from its superclass Point. It must be
noted, however, that while the field x of class Point is not inherited by class
Test, it is nevertheless implemented by instances of class Test. In other words,
every instance of class Test contains two fields, one of type int and one of type
double. Both fields bear the name x, but within the declaration of class Test, the
simple name x aways refers to the field declared within class Test. Code in

206

CLASSES Examples of Field Declarations

instance methods of class Test may refer to the instance variable x of class Point
as super.x.

Code that uses afield access expression to access field x will access the field
named x in the class indicated by the type of reference expression. Thus, the
expression sample.x accesses a double value, the instance variable declared in
class Test, because the type of the variable sample is Test, but the expression
((Point)sample).x accesses an int vaue, the instance variable declared in
class Point, because of the cast to type Point.

If the declaration of x is deleted from class Test, asin the program:

class Point {

static int x = 2;
}
class Test extends Point {

void printBoth() {
System.out.printin(x +
3

public static void main(String[] args) {
Test sample = new Test();
sample.printBoth();
System.out.printin(sample.x + " " +
((Point)sample).x);

+ super.x);

}

then the field x of class Point is no longer hidden within class Test. Within
instance methods in the declaration of class Test, the simple name x how refersto
the field declared within class Point. Code in class Test may still refer to that
same field as super.x. The expression sample.x still refersto the field x within
type Test, but that field is now an inherited field, and so refers to the field x
declared in class Point. The output from this variant programis:

2 2

2 2

8.3.3.3 Example: Multiply Inherited Fields

A class may inherit two or more fields with the same name, either from two inter-
faces or from its superclass and an interface. A compile-time error occurs on any
attempt to refer to any ambiguoudly inherited field by its ssmple name. A qualified
name or afield access expression that contains the keyword super (815.11.2) may
be used to access such fields unambiguously. In the example:

interface Frob { float v = 2.0f; }

class SuperTest { int v = 3; }

8.3.3

207

8.3.3 Examples of Field Declarations CLASSES

class Test extends SuperTest implements Frob {

public static void main(String[] args) {
new Test().printvV(Q);
}

void printV() { System.out.printin(v); }
3

the class Test inheritstwo fields named v, one from its superclass SuperTest and
one from its superinterface Frob. This in itself is permitted, but a compile-time
error occurs because of the use of the simple name v in method printV: it cannot
be determined which v isintended.

The following variation uses the field access expression super.v to refer to
the field named v declared in class SuperTest and uses the qualified name
Frob.v to refer to the field named v declared in interface Frob:

interface Frob { float v = 2.0f; }
class SuperTest { int v = 3; }

class Test extends SuperTest implements Frob {

public static void main(String[] args) {
new Test().printvV(Q);

3
void printV(Q) {

System.out.println((super.v + Frob.v)/2);
}

}

It compiles and prints:

2.5

Even if two distinct inherited fields have the same type, the same value, and
are both final, any reference to either field by simple name is considered ambig-
uous and results in a compile-time error. In the example:

interface Color { int RED=0, GREEN=1, BLUE=2; }
interface TrafficLight { int RED=0, YELLOW=1, GREEN=2; }

class Test implements Color, TrafficLight {

public static void main(String[] args) {
System.out.print1n(GREEN); // compile-time error
System.out.printTn(RED); // compile-time error

}

it is not astonishing that the reference to GREEN should be considered ambiguous,
because class Test inherits two different declarations for GREEN with different
values. The point of this example is that the reference to RED is also considered
ambiguous, because two distinct declarations are inherited. The fact that the two

208

CLASSES Method Declarations 8.4

fields named RED happen to have the same type and the same unchanging value
does not affect this judgment.

8.3.3.4 Example: Re-inheritance of Fields

If the same field declaration is inherited from an interface by multiple paths, the
field is considered to be inherited only once. It may be referred to by its simple
name without ambiguity. For example, in the code:
public interface Colorable {
int RED = Oxff0000, GREEN = 0x00ff00, BLUE = Ox0000ff;
}
public interface Paintable extends Colorable {
int MATTE = 0, GLOSSY = 1;
}

class Point { int x, y; }

class ColoredPoint extends Point implements Colorable {

3
class PaintedPoint extends ColoredPoint implements Paintable

{

}

the fields RED, GREEN, and BLUE are inherited by the class PaintedPoint both
through its direct superclass ColoredPoint and through its direct superinterface
Paintable. The simple names RED, GREEN, and BLUE may nevertheless be used
without ambiguity within the class PaintedPoint to refer to the fields declared in
interface Colorable.

RED

8.4 Method Declarations

A method declares executable code that can be invoked, passing a fixed number of
values as arguments.

209

84.1

210

Formal Parameters CLASSES

MethodDeclaration:
MethodHeader MethodBody

MethodHeader:
MethodModifiers,, TypeParameters,, ResultType MethodDeclarator
Throwsgpt

ResultType:
Type
void
MethodDeclarator:
Identifier (FormalParameterListop:)

The MethodModifiers are described in 88.4.3, the TypeParameters clause of a
method in §8.4.4, the Throws clause in §8.4.6, and the MethodBody in §8.4.7. A
method declaration either specifies the type of value that the method returns or
uses the keyword void to indicate that the method does not return a value.

The Identifier in a MethodDeclarator may be used in a name to refer to the
method. A class can declare a method with the same name as the class or afield,
member class or member interface of the class, but thisis discouraged as a matter
of syle.

For compatibility with older versions of the Java platform, a declaration form
for a method that returns an array is alowed to place (some or al of) the empty
bracket pairs that form the declaration of the array type after the parameter list.
Thisis supported by the obsolescent production:

MethodDeclarator:
MethodDeclarator []

but should not be used in new code.

It is a compile-time error for the body of a class to declare as members two
methods with override-equivalent signatures (88.4.2) (name, number of parame-
ters, and types of any parameters). Methods and fields may have the same name,
sincethey are used in different contexts and are disambiguated by different lookup
procedures (86.5).

84.1 Formal Parameters

The formal parameters of amethod or constructor, if any, are specified by alist of
comma-separated parameter specifiers. Each parameter specifier consists of atype
(optionally preceded by the final modifier and/or one or more annotations
(89.7)) and an identifier (optionally followed by brackets) that specifies the name

CLASSES Formal Parameters

of the parameter. The last formal parameter in alist is special; it may be avariable
arity parameter, indicated by an elipsis following the type:

Formal ParameterList:
LastFor mal Parameter
FormalParameters , LastFormalParameter

Formal Parameters:
Formal Parameter
FormalParameters , FormalParameter

Formal Parameter:
VariableModifiers Type VariableDeclaratorld

VariableModifiers:
VariableModifier
VariableModifiers VariableModifier

VariableModifier: one of
final Annotation

LastFor mal Parameter:
VariableModifiers Type. . . opt VariableDeclaratorld
Formal Parameter

Thefollowing is repeated from §8.3 to make the presentation here clearer:

VariableDeclarator|d:
Identifier
VariableDeclaratorld []

If amethod or constructor has no parameters, only an empty pair of parenthe-
ses appearsin the declaration of the method or constructor.

If two formal parameters of the same method or constructor are declared to
have the same name (that is, their declarations mention the same | dentifier), then a
compile-time error occurs.

If an annotation a on aformal parameter corresponds to an annotation type T,
and T has a (meta-)annotation m that corresponds to annotation.Target, thenm
must have an element whose valueis annotation.ElementType.PARAMETER, Or
a compile-time error occurs. Annotation modifiers are described further in §9.7.

It isacompile-time error if amethod or constructor parameter that is declared
final isassigned to within the body of the method or constructor.

When the method or constructor is invoked (815.12), the values of the actual
argument expressions initialize newly created parameter variables, each of the
declared Type, before execution of the body of the method or constructor. The

841

211

8.4.2

212

Method Sgnature CLASSES

Identifier that appears in the Declaratorld may be used as a smple name in the
body of the method or constructor to refer to the formal parameter.

If the last formal parameter is avariable arity parameter of type T, it is consid-
ered to define aformal parameter of type T[]. The method isthen avariable arity
method. Otherwise, it is a fixed arity method. Invocations of a variable arity
method may contain more actual argument expressions than formal parameters.
All the actual argument expressions that do not correspond to the formal parame-
ters preceding the variable arity parameter will be evaluated and the results stored
into an array that will be passed to the method invocation (815.12.4.2).

The scope of a parameter of a method (88.4.1) or constructor (88.8.1) is the
entire body of the method or constructor.

These parameter names may not be redeclared as local variables of the
method, or as exception parameters of catch clauses in a try statement of the
method or constructor. However, a parameter of a method or constructor may be
shadowed anywhere inside a class declaration nested within that method or con-
structor. Such a nested class declaration could declare either alocal class (814.3)
or an anonymous class (§15.9).

Formal parameters are referred to only using simple names, never by using
qualified names (86.6).

A method or constructor parameter of type float always contains an element
of the float value set (84.2.3); similarly, amethod or constructor parameter of type
doub1e aways contains an e ement of the double value set. It is not permitted for
a method or constructor parameter of type float to contain an element of the
float-extended-exponent value set that is not also an element of the float value set,
nor for a method parameter of type double to contain an element of the double-
extended-exponent value set that is not also an element of the double value set.

Where an actual argument expression corresponding to a parameter variableis
not FP-strict (815.4), evaluation of that actual argument expression is permitted to
use intermediate values drawn from the appropriate extended-exponent value sets.
Prior to being stored in the parameter variable the result of such an expression is
mapped to the nearest value in the corresponding standard value set by method
invocation conversion (85.3).

8.4.2 Method Signature

It isacompile-time error to declare two methods with override-equivalent sig-
natures (defined below) in aclass.

Two methods have the same signature if they have the same name and argu-
ment types.

CLASSES Method Sgnature 8.4.2

Two method or constructor declarations M and N have the same argument types
if al of the following conditions hold:

» They have the same number of formal parameters (possibly zero)
» They have the same number of type parameters (possibly zero)

* Let<Aq,...,Ay> betheformal type parametersof M and let <B1, . . . ,By> be
the formal type parameters of N. After renaming each occurrence of aBj inN’s
type to A; the bounds of corresponding type variables and the argument types
of M and N are the same.

The signature of a method m1 is a subsignature of the signature of a method
m2 if either

o m2 has the same signature asm1, or

o the signature of m1 is the same as the erasure of the signature of m2.

DiscussioN

The notion of subsignature defined here is designed to express a relationship between two
methods whose signatures are not identical, but in which one may override the other.

Specifically, it allows a method whose signature does not use generic types to override
any generified version of that method. This is important so that library designers may freely
generify methods independently of clients that define subclasses or subinterfaces of the
library.

Consider the example:

class CollectionConverter {

List toList(Collection c) {...}
}

class Overrider extends CollectionConverter{
List toList(Collection c) {...}
h

Now, assume this code was written before the introduction of genericity, and now the
author of class CollectionConverter decides to generify the code, thus:
class CollectionConverter {
<T> List<T> tolList(Collection<T> c) {...}
3

Without special dispensation, Overrider.tolList() would no longer override Col-
TectionConverter.toList(). Instead, the code would be illegal. This would significantly
inhibit the use of genericity, since library writers would hesitate to migrate existing code.

213

8.4.3

214

Method Modifiers CLASSES

Two method signatures m1 and m2 are override-equivalent iff either m1 isasubsig-
nature of m2 or m2 is a subsignature of m1.
The example:
class Point implements Move {
int x, y;
abstract void move(int dx, int dy);
void move(int dx, int dy) { x += dx; y += dy; }
}
causes a compile-time error because it declares two move methods with the same
(and hence, override-equivalent) signature. Thisis an error even though one of the
declarationsis abstract.

8.4.3 Method Modifiers

MethodModifiers:
MethodModifier
MethodModifiers MethodModifier

MethodModifier: one of
Annotation public protected private abstract static
final synchronized native strictfp

The access modifiers public, protected, and private are discussed in
86.6. A compile-time error occurs if the same modifier appears more than oncein
a method declaration, or if a method declaration has more than one of the access
modifiers public, protected, and private. A compile-time error occurs if a
method declaration that contains the keyword abstract aso contains any one of
the keywords private, static, final, native, strictfp, or synchronized. A
compile-time error occurs if a method declaration that contains the keyword
native also contains strictfp.

If an annotation a on a method declaration corresponds to an annotation type
T, and T has a (meta-)annotation m that correspondsto annotation.Target, then
m must have an element whose value is annotation.ElementType.METHOD, or a
compile-time error occurs. Annotations are discussed further in 89.7.

If two or more method modifiers appear in a method declaration, it is custom-
ary, though not required, that they appear in the order consistent with that shown
above in the production for MethodModifier.

8.4.3.1 abstract Methods

An abstract method declaration introduces the method as a member, providing
its signature (88.4.2), return type, and throws clause (if any), but does not provide

CLASSES Method Modifiers

an implementation. The declaration of an abstract method m must appear
directly within an abstract class (call it A) unless it occurs within an enum
(88.9); otherwise a compile-time error results. Every subclass of A that is not
abstract must provide an implementation for m, or a compile-time error occurs
as specified in §8.1.1.1.

It isacompile-time error for aprivate method to be declared abstract.

It would be impossible for a subclass to implement a private abstract
method, because private methods are not inherited by subclasses; therefore such
amethod could never be used.

It isacompile-time error for astatic method to be declared abstract.

It isacompile-time error for a final method to be declared abstract.

An abstract class can override an abstract method by providing another
abstract method declaration.

This can provide a place to put a documentation comment, to refine the return
type, or to declare that the set of checked exceptions (§811.2) that can be thrown by
that method, when it is implemented by its subclasses, is to be more limited. For
example, consider this code:

class BufferEmpty extends Exception {
BufferEmpty() { super(); }
BufferEmpty(String s) { super(s); }

3

class BufferError extends Exception {
BufferError() { super(Q); }
BufferError(String s) { super(s); }

}

public interface Buffer {
char get() throws BufferEmpty, BufferError;

}

public abstract class InfiniteBuffer implements Buffer {

public abstract char get() throws BufferError;
}

The overriding declaration of method get in class InfiniteBuffer states
that method get in any subclass of InfiniteBuffer never throws a Buffer-
Empty exception, putatively because it generates the data in the buffer, and thus
can never run out of data.

An instance method that is not abstract can be overridden by an abstract
method.

8.4.3

215

8.4.3

216

Method Modifiers CLASSES

For example, we can declare an abstract class Point that requires its sub-
classesto implement toString if they are to be complete, instantiabl e classes:
abstract class Point {

int x, y;
public abstract String toString(Q;
}

This abstract declaration of toString overrides the non-abstract toString
method of class Object. (Class Object is the implicit direct superclass of class
Point.) Adding the code:

class ColoredPoint extends Point {

int color;
public String toString() {

return super.toString() + ": color " + color; // error
}

}

results in a compile-time error because the invocation super.toString() refers
to method toString in class Point, which is abstract and therefore cannot be
invoked. Method toString of class Object can be made available to class
ColoredPoint only if class Point explicitly makes it available through some
other method, asin:
abstract class Point {

int x, y;

public abstract String toString(Q;

protected String objString() { return super.toString(; }

}
class ColoredPoint extends Point {
int color;
public String toString() {
return objString() + ": color " + color; // correct
}
}

8.4.3.2 static Methods

A method that is declared static is called a class method. A class method is
always invoked without reference to a particular object. An attempt to reference
the current object using the keyword this or the keyword super or to reference
the type parameters of any surrounding declaration in the body of a class method
results in a compile-time error. It is a compile-time error for a static method to
be declared abstract.

A method that is not declared static iscalled an instance method, and some-
times called a non-static method. An instance method is always invoked with

CLASSES Method Modifiers

respect to an object, which becomes the current object to which the keywords
this and super refer during execution of the method body.

8.4.3.3 final Methods

A method can be declared final to prevent subclasses from overriding or hiding
it. It isacompile-time error to attempt to override or hide a final method.

A private method and al methods declared immediately within a final
class (88.1.1.2) behave as if they are final, since it is impossible to override
them.

Itisacompile-time error for a final method to be declared abstract.

At run time, a machine-code generator or optimizer can “inline” the body of a
final method, replacing an invocation of the method with the code in its body.
The inlining process must preserve the semantics of the method invocation. In
particular, if the target of an instance method invocation is null, then a
Nul1PointerException must be thrown even if the method isinlined. The com-
piler must ensure that the exception will be thrown at the correct point, so that the
actual arguments to the method will be seen to have been evaluated in the correct
order prior to the method invocation.

Consider the example:

final class Point {

int x, y;
void move(int dx, int dy) { x += dx; y += dy; }
b

class Test {
public static void main(String[] args) {
Point[] p = new Point[100];
for (int i = 0; i < p.length; i++) {
p[i] = new Point();
p[i].move(i, p.length-1-1);
}

}

Here, inlining the method move of class Point in method main would transform
the for loop to the form:
for (int i = 0; i < p.length; i++) {

p[i] = new Point();

Point pi = p[i];

int j = p.length-1-1;

pi.x += 1;

pi.y += J;

8.4.3

217

8.4.3

218

Method Modifiers CLASSES

The loop might then be subject to further optimizations.

Such inlining cannot be done at compile time unless it can be guaranteed that
Test and Point will always be recompiled together, so that whenever Point—
and specifically its move method—changes, the code for Test.main will aso be
updated.

8.4.3.4 native Methods

A method that is native is implemented in platform-dependent code, typically
written in another programming language such as C, C++, FORTRAN,Or assembly
language. The body of a native method is given as a semicolon only, indicating
that the implementation is omitted, instead of a block.

A compile-time error occursif anative method isdeclared abstract.

For example, the class RandomAccessFile of the package java.io might
declare the following native methods:

package java.io;

pubTic class RandomAccessFile

impTlements DataOutput, Datalnput
{ ...
public native void open(String name, boolean writeable)
throws IOException;
public native 1int readBytes(byte[] b, int off, int len)
throws IOException;
public native void writeBytes(byte[] b, int off, int len)
throws IOException;
public native Tong getFilePointer() throws IOException;
public native void seek(long pos) throws IOException;
public native Tong length() throws IOException;
public native void close() throws IOException;

8.4.3.5 strictfp Methods

The effect of the strictfp modifier isto make all float or double expressions
within the method body be explicitly FP-strict (§815.4).

8.4.3.6 synchronized Methods

A synchronized method acquires a monitor (817.1) before it executes. For a
class (static) method, the monitor associated with the Class object for the
method’'s class is used. For an instance method, the monitor associated with this
(the object for which the method was invoked) is used.

CLASSES Method Modifiers

These are the same locks that can be used by the synchronized statement
(814.19); thus, the code:
class Test {
int count;
synchronized void bump() { count++; }
static int classCount;
static synchronized void classBump() {
classCount++;
3
3

has exactly the same effect as:
class BumpTest {

int count;

void bump() {
synchronized (this) {

count++;

}

3

static int classCount;
static void classBump() {

try {
synchronized (Class.forName("BumpTest™)) {

classCount++;

3
} catch (ClassNotFoundException e) {

}

}

The more elaborate example:
public class Box {

private Object boxContents;

public synchronized Object get() {
Object contents = boxContents;
boxContents = null;
return contents;
}
public synchronized boolean put(Object contents) {
if (boxContents != null)
return false;
boxContents = contents;
return true;

8.4.3

219

8.4.4

220

Generic Methods CLASSES

defines a class which is designed for concurrent use. Each instance of the class
Box has an instance variable boxContents that can hold areference to any object.
You can put an object in aBox by invoking put, which returns false if the box is
aready full. You can get something out of aBox by invoking get, which returns a
null reference if the box is empty.

If put and get were not synchronized, and two threads were executing
methods for the same instance of Box at the same time, then the code could misbe-
have. It might, for example, lose track of an object because two invocations to put
occurred at the same time.

See 817 for more discussion of threads and locks.

8.4.4 Generic Methods

A method is generic if it declares one or more type variables (84.4). These type
variables are known as the formal type parameters of the method. The form of the
formal type parameter list is identical to a type parameter list of a class or inter-
face, as described in §88.1.2.

The scope of a method's type parameter is the entire declaration of the
method, including the type parameter section itself. Therefore, type parameters
can appear as parts of their own bounds, or as bounds of other type parameters
declared in the same section.

Type parameters of generic methods need not be provided explicitly when a
generic method isinvoked. Instead, they are amost always inferred as specified in
§15.12.2.7

8.4.5 Method Return Type

The return type of a method declares the type of value a method returns, if it
returns avalue, or states that the method isvoid.

A method declaration dq with return type Rq is return-type-substitutable for
another method do with return type Ry, if and only if the following conditions
hold:

 If Ry isaprimitive type, then R, isidentical toR;.
 If Ry isareference type then:

o Rq is either a subtype of Ry or Ry can be converted to a subtype of R, by
unchecked conversion (85.1.9), or

7 Ry=|R2 |

CLASSES Method Throws

* If Ry isvoidthenRy isvoid.

DiscussioN

The notion of return-type substitutability summarizes the ways in which return types may
vary among methods that override each other.

Note that this definition supports covariant returns - that is, the specialization of the
return type to a subtype (but only for reference types).

Also note that unchecked conversions are allowed as well. This is unsound, and
requires an unchecked warning whenever it is used; it is a special allowance is made to
allow smooth migration from non-generic to generic code.

8.4.6 Method Throws

A throws clause is used to declare any checked exceptions (811.2) that can result
from the execution of a method or constructor:

Throws:
throws ExceptionTypeList

ExceptionTypeL.ist:
ExceptionType
ExceptionTypeList , ExceptionType

ExceptionType:
ClassType
TypeVariable

A compile-time error occurs if any ExceptionType mentioned in a throws clause
is not a subtype (84.10) of ThrowabTe. It is permitted but not required to mention
other (unchecked) exceptionsin a throws clause.

For each checked exception that can result from execution of the body of a
method or constructor, a compile-time error occurs unless that exception type or a
supertype of that exception type is mentioned in a throws clause in the declara-
tion of the method or constructor.

The requirement to declare checked exceptions allows the compiler to ensure
that code for handling such error conditions has been included. Methods or con-
structors that fail to handle exceptional conditions thrown as checked exceptions
will normally result in a compile-time error because of the lack of a proper excep-
tion type in a throws clause. The Java programming language thus encourages a

8.4.6

221

8.4.6

222

Method Throws CLASSES

programming style where rare and otherwise truly exceptional conditions are doc-
umented in this way.

The predefined exceptions that are not checked in thisway are those for which
declaring every possible occurrence would be unimaginably inconvenient:

» Exceptions that are represented by the subclasses of class Error, for example
OutOfMemoryError, are thrown due to afailure in or of the virtual machine.
Many of these are the result of linkage failures and can occur at unpredictable
points in the execution of a program. Sophisticated programs may yet wish to
catch and attempt to recover from some of these conditions.

» The exceptions that are represented by the subclasses of the class
RuntimeException, for example Nul1PointerException, result from run-
timeintegrity checks and are thrown either directly from the program or in
library routines. It is beyond the scope of the Java programming language, and
perhaps beyond the state of the art, to include sufficient information in the
program to reduce to a manageable number the places where these can be
proven not to occur.

A method that overrides or hides another method (88.4.8), including methods
that implement abstract methods defined in interfaces, may not be declared to
throw more checked exceptions than the overridden or hidden method.

More precisely, suppose that B is a class or interface, and A is a superclass or
superinterface of B, and a method declaration n in B overrides or hides a method
declarationm in A. If n hasa throws clause that mentions any checked exception
types, then m must have a throws clause, and for every checked exception type
listed in the throws clause of n, that same exception class or one of its supertypes
must occur in the erasure of the throws clause of m; otherwise, a compile-time
error occurs.

If the unerased throws clause of m does not contain a supertype of each
exception type in the throws clause of n, an unchecked warning must be issued.

DiscussioN

See 811 for more information about exceptions and a large example.
Type variables are allowed in throws lists even though they are not allowed in catch
clauses.
interface PrivilegedExceptionAction<E extends Exception> {
void run() throws E;

}

class AccessController {
pubTlic static <E extends Exception>

CLASSES Method Body 8.4.7

Object doPrivileged(PrivilegedExceptionAction<E> action) throws E
{ ...}
}

class Test {
public static void main(String[] args) {
try {
AccessController.doPrivileged(
new PrivilegedExceptionAction<FileNotFoundException>() {
pubTlic void run() throws FileNotFoundException
{... delete a file ...}
b
} catch (FileNotFoundException f) {...} // do something
}
}

8.4.7 Method Body

A method body is either a block of code that implements the method or smply a
semicolon, indicating the lack of an implementation. The body of a method must
be a semicolon if and only if the method is either abstract (88.4.3.1) or native
(88.4.3.9).

MethodBody:
Block

A compile-time error occurs if a method declaration is either abstract or
native and hasablock for its body. A compile-time error occurs if a method dec-
laration is neither abstract nor native and has a semicolon for its body.

If an implementation is to be provided for a method declared void, but the
implementation requires no executable code, the method body should be written
as ablock that contains no statements: “{ 3.

If a method is declared void, then its body must not contain any return
statement (814.17) that has an Expression.

If a method is declared to have a return type, then every return statement
(814.17) in its body must have an Expression. A compile-time error occurs if the
body of the method can complete normally (§14.1).

In other words, a method with areturn type must return only by using areturn
statement that provides avalue return; it is not alowed to “drop off the end of its
body.”

223

8.4.8

224

Inheritance, Overriding, and Hiding CLASSES

Note that it is possible for a method to have a declared return type and yet
contain no return statements. Here is one example:

class DizzyDean {
int pitch() { throw new RuntimeException("90 mph?!"); }
}

8.4.8 Inheritance, Overriding, and Hiding

A class C inherits from its direct superclass and direct superinterfaces all non-pri-
vate methods (whether abstract or not) of the superclass and superinterfaces
that are public, protected or declared with default access in the same package as C
and are neither overridden (88.4.8.1) nor hidden (88.4.8.2) by a declaration in the
class.

8.4.8.1 Overriding (by Instance Methods)

An instance method m1 declared in a class C overrides another instance method,
m2, declared in class A iff all of the following are true:

1. Cisasubclass of A.
2. The signature of m1 is asubsignature (88.4.2) of the signature of m2.
3. Either

o m2 is public, protected or declared with default access in the same package
asc, or

o m1 overrides a method m3, m3 distinct from m1, m3 distinct from m2, such
that m3 overrides m2.

Moreover, if m1 isnot abstract, then m1 issaid to implement any and all dec-
larations of abstract methodsthat it overrides.

DiscussioN

The signature of an overriding method may differ from the overridden one if a formal
parameter in one of the methods has raw type, while the corresponding parameter in the
other has a parameterized type.

The rules allow the signature of the overriding method to differ from the overridden
one, to accommodate migration of pre-existing code to take advantage of genericity. See
section §8.4.2 for further analysis.

CLASSES Inheritance, Overriding, and Hiding

A compile-time error occurs if an instance method overrides a static
method.

In this respect, overriding of methods differs from hiding of fields (88.3), for
it ispermissible for an instance variable to hide a static variable.

An overridden method can be accessed by using a method invocation expres-
sion (815.12) that contains the keyword super. Note that a qualified name or a
cast to a superclass type is not effective in attempting to access an overridden
method; in this respect, overriding of methods differs from hiding of fields. See
815.12.4.9 for discussion and examples of this point.

The presence or absence of the strictfp modifier has absolutely no effect on
the rules for overriding methods and implementing abstract methods. For exam-
ple, it is permitted for a method that is not FP-strict to override an FP-strict
method and it is permitted for an FP-strict method to override a method that is not
FP-strict.

8.4.8.2 Hiding (by Class Methods)

If aclass declares a static method m, then the declaration mis said to hide any
method mi, where the signature of m is a subsignature (88.4.2) of the signature of
mi, in the superclasses and superinterfaces of the class that would otherwise be
accessible to code in the class. A compile-time error occurs if a static method
hides an instance method.

In this respect, hiding of methods differs from hiding of fields (88.3), for it is
permissible for a static variable to hide an instance variable. Hiding is also dis-
tinct from shadowing (86.3.1) and obscuring (86.3.2).

A hidden method can be accessed by using a qualified name or by using a
method invocation expression (815.12) that contains the keyword super or a cast
to a superclass type. In this respect, hiding of methods is similar to hiding of
fields.

8.4.8.3 Reguirementsin Overriding and Hiding

If amethod declaration d1 with return type R overrides or hides the declaration of
another method d» with return type Ro, then dq must be return-type substitutable
for do, or a compile-time error occurs. Furthermore, if Rq is not a subtype of Ry,
an unchecked warning must be issued (unless suppressed (89.6.1.5)).

A method declaration must not have a throws clause that conflicts (88.4.6)
with that of any method that it overrides or hides; otherwise, a compile-time error
occurs.

8.4.8

225

8.4.8

226

Inheritance, Overriding, and Hiding CLASSES

DiscussioN

The rules above allow for covariant return types - refining the return type of a method when
overriding it.
For example, the following declarations are legal although they were illegal in prior ver-
sions of the Java programming language:
class C implements Cloneable {
C copy() { return (Oclone(Q); }

class D extends C implements Cloneable {
D copy() { return (D)clone(Q); }

The relaxed rule for overriding also allows one to relax the conditions on abstract
classes implementing interfaces.

DiscussioN

Consider
class StringSorter {

// takes a collection of strings and converts it to a sortedlist
List toList(Collection c) {...}
}

and assume that someone subclasses StringCollector
class Overrider extends StringSorter{

List toList(Collection c) {...}
3

Now, at some point the author of StringSorter decides to generify the code
class StringSorter {

// takes a collection of strings and converts it to a Tlist
List<String> tolList(Collection<String> c) {...}
}

An unchecked warning would be given when compiling Overrider against the new
definition of StringSorter because the return type of Overrider.toList() is List,
which is not a subtype of the return type of the overridden method, List<String.

In these respects, overriding of methods differs from hiding of fields (88.3),
for it ispermissible for afield to hide a field of another type.

CLASSES Inheritance, Overriding, and Hiding 8.4.8

It isacompile time error if atype declaration T has a member method m1 and
there exists a method m, declared in T or a supertype of T such that al of the fol-
lowing conditions hold:

* mq and my have the same name.
* my isaccessiblefrom T.
» Thesignature of mq is not a subsignature (88.4.2) of the signature of mo.

* mq or some method mq overrides (directly or indirectly) has the same erasure
as mp or some method my overrides (directly or indirectly).

DiscussioN

These restrictions are necessary because generics are implemented via erasure. The rule
above implies that methods declared in the same class with the same name must have dif-
ferent erasures. It also implies that a type declaration cannot implement or extend two dis-
tinct invocations of the same generic interface. Here are some further examples.

A class cannot have two member methods with the same name and type erasure.

class C<T> { T 1id (T x) {...} }

class D extends C<String> {

Object id(Object x) {...}
}

This is illegal since D.id(Object) is a member of D, C<String>.id(String) is
declared in a supertype of D and:

* The two methods have the same name, id
e C<String>.1id(String) is accessible to D

*The signature of D.id(Object) is not a subsignature of that of
C<String>.id(String)

* The two methods have the same erasure

DiscussioN

Two different methods of a class may not override methods with the same erasure.
class C<T> { T 1id (T x) {...} }

interface I<T> { Tid(T x); }
class D extends C<String> implements I<Integer> {

227

8.4.8 Inheritance, Overriding, and Hiding CLASSES

String id(String x) {...}
Integer id(Integer x) {...}
h

This is also illegal, since D.id(String) is a member of D, D.id(Integer) is
declared in D and:

« the two methods have the same name, id
« the two methods have different signatures.
¢ D.id(Integer) is accessible to D

*D.id(String) overrides C<String>.id(String) and D.id(Integer) overrides
I.id(Integer) yetthe two overridden methods have the same erasure

The access modifier (86.6) of an overriding or hiding method must provide at
least as much access as the overridden or hidden method, or a compile-time error
occurs. In more detail:

* If the overridden or hidden method is pub1ic, then the overriding or hiding
method must be pub11 c; otherwise, a compile-time error occurs.

« If the overridden or hidden method is protected, then the overriding or hid-
ing method must be protected or public; otherwise, a compile-time error
occurs.

* If the overridden or hidden method has default (package) access, then the
overriding or hiding method must not be private; otherwise, a compile-time
error occurs.

Note that a private method cannot be hidden or overridden in the technical
sense of those terms. This means that a subclass can declare a method with the
same signature as a private method in one of its superclasses, and there is no
requirement that the return type or throws clause of such a method bear any rela-
tionship to those of the private method in the superclass.

8.4.8.4 Inheriting Methods with Override-Equivalent Signatures

It is possible for a class to inherit multiple methods with override-equivalent
(88.4.2) signatures.

It is a compile time error if aclass C inherits a concrete method whose signa-
turesis a subsignature of another concrete method inherited by C.

228

CLASSES Overloading

DiscussioN

This can happen, if a superclass is parametric, and it has two methods that were distinct in

the generic declaration, but have the same signature in the particular invocation used.

Otherwise, there are two possible cases:

« |f one of the inherited methods is not abstract, then there are two subcases:
o If the method that isnot abstract isstatic, acompile-time error occurs.

o Otherwise, the method that is not abstract is considered to override, and
therefore to implement, al the other methods on behalf of the class that
inheritsit. If the signature of the non-abstract method is not a subsignature
of each of the other inherited methods an unchecked warning must be
issued (unless suppressed (89.6.1.5)). A compile-time error also occurs if
the return type of the non-abstract method is not return type substitutable
(88.4.5) for each of the other inherited methods. If the return type of the
non-abstract method is not a subtype of the return type of any of the other
inherited methods, an unchecked warning must be issued. Moreover, acom-
pile-time error occurs if the inherited method that is not abstract has a
throws clause that conflicts (88.4.6) with that of any other of the inherited

methods.

* If dl the inherited methods are abstract, then the class is necessarily an
abstract class and is considered to inherit all the abstract methods. A
compile-time error occurs if, for any two such inherited methods, one of the
methods is not return type substitutable for the other (The throws clauses do

not cause errors in this case.)

There might be several paths by which the same method declaration might be
inherited from an interface. This fact causes no difficulty and never, of itself,

results in a compile-time error.

8.4.9 Overloading

If two methods of a class (whether both declared in the same class, or both inher-
ited by a class, or one declared and one inherited) have the same name but signa-
tures that are not override-equivalent, then the method name is said to be
overloaded. This fact causes no difficulty and never of itself results in a compile-

8.4.9

229

8.4.10 Examples of Method Declarations CLASSES

230

time error. There is no required relationship between the return types or between
the throws clauses of two methods with the same name, unless their signatures
are override-equivalent.

Methods are overridden on a signature-by-signature basis.

If, for example, a class declares two pub1ic methods with the same name,
and a subclass overrides one of them, the subclass still inherits the other method.

When amethod isinvoked (815.12), the number of actual arguments (and any
explicit type arguments) and the compile-time types of the arguments are used, at
compile time, to determine the signature of the method that will be invoked
(815.12.2). If the method that is to be invoked is an instance method, the actual
method to be invoked will be determined at run time, using dynamic method
lookup (815.12.4).

8.4.10 Examplesof Method Declarations

The following examples illustrate some (possibly subtle) points about method
declarations.

8.4.10.1 Example: Overriding

In the example:
class Point {
int x =0, y = 0;
void move(int dx, int dy) { x += dx; y += dy; }
}
class SlowPoint extends Point {
int xLimit, yLimit;
void move(int dx, int dy) {
super.move(limit(dx, xLimit), Timit(dy, yLimit));
}
static int Timit(int d, int Timit) {
return d > Timit ? Timit : d < -Timit ? -Timit : d;
}
}

the class STowPoint overrides the declarations of method move of class Point
with its own move method, which limits the distance that the point can move on
each invocation of the method. When the move method is invoked for an instance
of class STowPoint, the overriding definition in class STowPoint will always be

CLASSES Examples of Method Declarations 8.4.10

called, even if the reference to the STowPoint object is taken from a variable
whosetypeisPoint.

8.4.10.2 Example: Overloading, Overriding, and Hiding

In the example:
class Point {
int x =0, y = 0;
void move(int dx, int dy) { x += dx; y += dy; }
int color;

}

class RealPoint extends Point {

float x = 0.0f, y = 0.0f;
void move(int dx, int dy) { move((float)dx, (float)dy); }
void move(float dx, float dy) { x += dx; y += dy; }

b

the class RealPoint hides the declarations of the int instance variables x and y
of class Point with its own float instance variables x and y, and overrides the
method move of class Point with its own move method. It also overloads the name
move with another method with a different signature (88.4.2).

In this example, the members of the class RealPoint include the instance
variable color inherited from the class Point, the float instance variables x and
y declared in RealPo1int, and the two move methods declared in RealPoint.

Which of these overloaded move methods of class RealPoint will be chosen
for any particular method invocation will be determined at compile time by the
overloading resolution procedure described in 815.12.

8.4.10.3 Example: Incorrect Overriding

This example is an extended variation of that in the preceding section:
class Point {

int x = 0, y = 0, color;
void move(int dx, int dy) { x += dx; y += dy; }
int getX() { return x; }
int getY() { return y; }

231

8.4.10 Examples of Method Declarations CLASSES

class RealPoint extends Point {

}

float x = 0.0f, y = 0.0f;

void move(int dx, int dy) { move((float)dx, (float)dy); }
void move(float dx, float dy) { x += dx; y += dy; }

float getX() { return x; }

float getY() { return y; }

Here the class Point provides methods getX and getY that return the values of its
fields x and y; the class RealPoint then overrides these methods by declaring
methods with the same signature. The result istwo errors at compile time, one for
each method, because the return types do not match; the methods in class Point
return values of type int, but the wannabe overriding methods in class
RealPoint return values of type float.

8.4.10.4 Example: Overriding versus Hiding

This example corrects the errors of the example in the preceding section:
class Point {

}

int x =0, y = 0;

void move(int dx, int dy) { x += dx; y += dy; }
int getX() { return x; }

int getY() { return y; }

int color;

class RealPoint extends Point {

}

float x = 0.0f, y = 0.0f;

void move(int dx, int dy) { move((float)dx, (float)dy); }
void move(float dx, float dy) { x += dx; y += dy; }

int getX() { return (int)Math.floor(x); }

int getY() { return (int)Math.floor(y); }

Here the overriding methods getX and getY in class RealPoint have the same
return types as the methods of class Point that they override, so this code can be
successfully compiled.

232

CLASSES Examples of Method Declarations 8.4.10

Consider, then, this test program:
class Test {
public static void main(String[] args) {
RealPoint rp = new RealPoint();
Point p = rp;
rp.move(1.71828f, 4.14159f);
p.move(l, -1);
show(p.x, p.y);
show(rp.x, rp.y);
show(p.getX(), p.getY());
show(rp.getX(), rp.getY());
}

static void show(int x, int y) {
System.out.println("(" + x +

",y + "),
}

static void show(float x, float y) {

System.out.printIn("(" + x + ", " +y + "";
}
}
The output from this program is:

0, 0

(2.7182798, 3.14159)

@2, 3

@, 3

Thefirst line of output illustrates the fact that an instance of RealPoint actu-
ally contains the two integer fields declared in class Point; it is just that their
names are hidden from code that occurs within the declaration of class
RealPoint (and those of any subclasses it might have). When a reference to an
instance of classRealPoint in avariable of type Point isused to accessthefield
x, the integer field x declared in class Point is accessed. The fact that its valueis
zero indicates that the method invocation p.move(1, -1) did not invoke the
method move of class Point; instead, it invoked the overriding method move of
classRealPoint.

The second line of output shows that the field access rp. x refersto the field x
declared in class RealPoint. Thisfield is of type f1oat, and this second line of
output accordingly displays floating-point values. Incidentally, this also illustrates
the fact that the method name show is overloaded; the types of the arguments in
the method invocation dictate which of the two definitions will be invoked.

The last two lines of output show that the method invocations p.getX() and
rp.getX() each invoke the getX method declared in class RealPoint. Indeed,
there is no way to invoke the getX method of class Point for an instance of class

233

8.4.10 Examples of Method Declarations CLASSES

234

RealPoint from outside the body of RealPoint, no matter what the type of the
variable we may use to hold the reference to the object. Thus, we see that fields
and methods behave differently: hiding is different from overriding.

8.4.10.5 Example: Invocation of Hidden Class Methods

A hidden class (stat1ic) method can be invoked by using a reference whaose type
is the class that actually contains the declaration of the method. In this respect,
hiding of static methods is different from overriding of instance methods. The
example:
class Super {
static String greeting() { return "Goodnight"; }
String name() { return "Richard"; }
}
class Sub extends Super {
static String greeting() { return "Hello"; }
String name() { return "Dick"; }
}
class Test {

public static void main(String[] args) {
Super s = new Sub(Q);
System.out.printin(s.greeting() + ", " + s.name());

}
}

produces the output:

Goodnight, Dick
because the invocation of greeting uses the type of s, namely Super, to figure
out, at compile time, which class method to invoke, whereas the invocation of
name uses the class of s, namely Sub, to figure out, at run time, which instance
method to invoke.

8.4.10.6 Large Example of Overriding
Overriding makes it easy for subclasses to extend the behavior of an existing
class, as shown in this example:
import java.io.OutputStream;
import java.io.IOException;
class BufferOutput {
private OutputStream o;
BufferOutput(OutputStream o) { this.o = o; }

CLASSES Examples of Method Declarations 8.4.10

protected byte[] buf = new byte[512];
protected int pos = 0;

pubTic void putchar(char c) throws IOException {
if (pos == buf.Tlength)
flush(Q;
buf[pos++] = (byte)c;
}
public void putstr(String s) throws IOException {
for (int i = 0; i < s.Tength(Q); i++)
putchar(s.charAt(i));
}
public void flush() throws IOException {

o.write(buf, 0, pos);
pos = 0;

}
class LineBufferOutput extends BufferOutput {

LineBufferOutput(OQutputStream o) { super(o); }

public void putchar(char c) throws IOException {

super.putchar(c);
if (c == "\n")
flushQ;

}

class Test {

public static void main(String[] args)
throws IOException

{
LineBufferOutput Tho =
new LineBufferOutput(System.out);
Tbo.putstr("1bo\n1bo");
System.out.print("print\n");
Tbo.putstr("\n");
3
3
This example produces the output:
1bo
print
1bo

The class BufferOutput implements a very simple buffered version of an
OutputStream, flushing the output when the buffer is full or flush is invoked.

235

8.4.10 Examples of Method Declarations CLASSES

236

The subclass LineBufferOutput declares only aconstructor and a single method
putchar, which overrides the method putchar of BufferOQutput. It inherits the
methods putstr and flush from class BufferOutput.

In the putchar method of aLineBufferOutput object, if the character argu-
ment isanewline, then it invokesthe f1ush method. The critical point about over-
riding in this example is that the method putstr, which is declared in class
BufferOutput, invokes the putchar method defined by the current object this,
which is not necessarily the putchar method declared in class BufferOutput.

Thus, when putstr isinvoked in main using the LineBufferOutput object
Tbo, the invocation of putchar in the body of the putstr method isan invocation
of the putchar of the object 1bo, the overriding declaration of putchar that
checks for a newline. This allows a subclass of BufferOutput to change the
behavior of the putstr method without redefining it.

Documentation for a class such as BufferOutput, which is designed to be
extended, should clearly indicate what is the contract between the class and its
subclasses, and should clearly indicate that subclasses may override the putchar
method in this way. The implementor of the BufferOutput class would not,
therefore, want to change the implementation of putstr in afuture implementa-
tion of BufferOutput not to use the method putchar, because this would break
the preexisting contract with subclasses. See the further discussion of binary com-
patibility in 813, especially §13.2.

8.4.10.7 Example: Incorrect Overriding because of Throws

This example uses the usual and conventional form for declaring a new exception
type, in its declaration of the class BadPointException:
class BadPointException extends Exception {

BadPointException() { super(); }
BadPointException(String s) { super(s); }
}

class Point {
int x, y;
void move(int dx, int dy) { x += dx; y += dy; }
}
class CheckedPoint extends Point {
void move(int dx, int dy) throws BadPointException {
if (X +dx) <0 |] Cy + dy) < 0)
throw new BadPointException();
X += dx; y += dy;
}

CLASSES Member Type Declarations

This example results in a compile-time error, because the override of method
move in class CheckedPoint declares that it will throw a checked exception that
the move in class Point has not declared. If this were not considered an error, an
invoker of the method move on a reference of type Point could find the contract
between it and Point broken if this exception were thrown.
Removing the throws clause does not help:
class CheckedPoint extends Point {
void move(int dx, int dy) {
if (xk+dx) <0 |] C(y + dy) < 0)
throw new BadPointException();
X += dx; y += dy;
}
3
A different compile-time error now occurs, because the body of the method
move cannot throw a checked exception, namely BadPointException, that does
not appear in the throws clause for move.

8.5 Member Type Declarations

A member classis a class whose declaration is directly enclosed in another class
or interface declaration. Similarly, amember interfaceis an interface whose decla-
ration is directly enclosed in another class or interface declaration. The scope
(86.3) of amember class or interface is specified in §8.1.6.

If the class declares a member type with a certain name, then the declaration
of that type is said to hide any and all accessible declarations of member types
with the same name in superclasses and superinterfaces of the class.

Within a class C, adeclaration d of a member type named n shadows the dec-
larations of any other types named n that are in scope at the point where d occurs.

If a member class or interface declared with simple name c is directly
enclosed within the declaration of a class with fully qualified name N, then the
member class or interface has the fully qualified name N.C. A class inherits from
its direct superclass and direct superinterfaces al the non-private member types of
the superclass and superinterfaces that are both accessible to code in the class and
not hidden by adeclaration in the class.

A class may inherit two or more type declarations with the same name, either
from two interfaces or from its superclass and an interface. A compile-time error
occurs on any attempt to refer to any ambiguously inherited class or interface by
its ssimple name

8.5

237

851

238

Modifiers CLASSES

If the same type declaration is inherited from an interface by multiple paths,
the class or interface is considered to be inherited only once. It may be referred to
by its simple name without ambiguity.

85.1 Modifiers

The access modifiers public, protected, and private are discussed in §6.6.
A compile-time error occurs if a member type declaration has more than one of
the access modifierspublic, protected, and private.

Member type declarations may have annotation modifers just like any type or
member declaration.

8.5.2 Static Member Type Declarations

The static keyword may modify the declaration of a member type C within the
body of anon-inner class T. Its effect isto declare that C is not an inner class. Just
as a static method of T has no current instance of T in its body, C aso has no cur-
rent instance of T, nor doesit have any lexically enclosing instances.

It isacompile-time error if a static class contains a usage of anon-static
member of an enclosing class.

Member interfaces are always implicitly static. It is permitted but not
required for the declaration of a member interface to explicitly list the static
modifier.

8.6 Instancelnitializers

Aninstanceinitializer declared in aclassis executed when an instance of the class
is created (815.9), as specified in 88.8.7.1.

Instancel nitializer:
Block

It is compile-time error if an instance initializer of a named class can throw a
checked exception unless that exception or one of its supertypes is explicitly
declared in the throws clause of each constructor of its class and the class has at
least one explicitly declared constructor. An instance initializer in an anonymous
class (815.9.5) can throw any exceptions.

The rules above distinguish between instance initializers in named and anony-
mous classes. This distinction is deliberate. A given anonymous class is only
instantiated at a single point in a program. It is therefore possible to directly prop-

CLASSES Satic Initializers

agate information about what exceptions might be raised by an anonymous class
instance initializer to the surrounding expression. Named classes, on the other
hand, can be instantiated in many places. Therefore the only way to propagate
information about what exceptions might be raised by an instance initializer of a
named class is through the throws clauses of its constructors. It follows that a
more liberal rule can be used in the case of anonymous classes. Similar comments
apply to instance variableinitializers.

It is a compile-time error if an instance initializer cannot complete normally
(814.21). If areturn statement (814.17) appears anywhere within an instance ini-
tializer, then a compile-time error occurs.

Use of instance variables whose declarations appear textually after the use is
sometimes restricted, even though these instance variables are in scope. See
88.3.2.3 for the precise rules governing forward reference to instance variables.

Instance initializers are permitted to refer to the current object this (815.8.3),
to any type variables (84.4) in scope and to use the keyword super (815.11.2,
§15.12).

8.7 StaticInitializers

Any datic initializers declared in a class are executed when the classis initialized
and, together with any field initializers (88.3.2) for class variables, may be used to
initialize the class variables of the class (§12.4).

Saticlnitializer:
static Block

It isacompile-time error for astatic initializer to be able to complete abruptly
(814.1, 815.6) with a checked exception (811.2). It is a compile-time error if a
gtatic initializer cannot complete normally (814.21).

The static initializers and class variable initiaizers are executed in textual
order.

Use of class variables whose declarations appear textually after the use is
sometimes restricted, even though these class variables are in scope. See §8.3.2.3
for the precise rules governing forward reference to class variables.

If a return statement (814.17) appears anywhere within a static initializer,
then a compile-time error occurs.

If the keyword this (815.8.3) or any type variable (84.4) defined outside the
initializer or the keyword super (815.11, 8§15.12) appears anywhere within a
static initializer, then a compile-time error occurs.

8.7

239

8.8

240

Constructor Declarations CLASSES

8.8 Constructor Declarations

A constructor is used in the creation of an object that is an instance of aclass:

Constructor Declaration:
ConstructorModifiersyy Constructor Declarator
Throwsyy Constructor Body

Constructor Declarator:
TypeParameters,, SmpleTypeName (- Formal Parameter Listoy:)

The SmpleTypeName in the Constructor Declarator must be the simple name of
the class that contains the constructor declaration; otherwise a compile-time error
occurs. In al other respects, the constructor declaration looks just like a method
declaration that has no result type.

Hereisasimple example:
class Point {
int x, y;
Point(int x, int y) { this.x = x; this.y = vy; }

}

Constructors are invoked by class instance creation expressions (815.9), by
the conversions and concatenations caused by the string concatenation operator +
(815.18.1), and by explicit constructor invocations from other constructors
(88.8.7). Constructors are never invoked by method invocation expressions
(815.12).

Access to constructors is governed by access modifiers (86.6).

This is useful, for example, in preventing instantiation by declaring an inac-
cessible constructor (88.8.10).

Constructor declarations are not members. They are never inherited and there-
fore are not subject to hiding or overriding.

8.8.1 Formal Parametersand Formal Type Parameter

The formal parameters and formal type parameters of a constructor are identical
in structure and behavior to the formal parameters of a method (88.4.1).

CLASSES Constructor Modifiers

8.8.2 Constructor Signature

It is acompile-time error to declare two constructors with override-equivalent
(88.4.2) signaturesin aclass. It is acompile-time error to declare two constructors
whose signature has the same erasure (84.6) in aclass.

8.8.3 Constructor Modifiers

ConstructorModifiers:
ConstructorModifier
ConstructorModifiers ConstructorModifier

ConstructorModifier: one of
Annotation public protected private

The access modifiers public, protected, and private are discussed in
86.6. A compile-time error occurs if the same modifier appears more than oncein
a constructor declaration, or if a constructor declaration has more than one of the
access modifiers pub1ic, protected, and private.

If no access modifier is specified for the constructor of a normal class, the
constructor has default access. If no access modifier is specified for the construc-
tor of an enum type, the constructor is private. It is a compile-time error if the
constructor of an enum type (88.9) isdeclared public or protected.

If an annotation a on a constructor corresponds to an annotation type T, and T
has a (meta-)annotation m that corresponds to annotation.Target, then m must
have an element whose value is annotation.ETementType.CONSTRUCTOR, or a
compile-time error occurs. Annotations are further discussed in 89.7.

Unlike methods, a constructor cannot be abstract, static, final, native,
strictfp, or synchronized. A constructor is not inherited, so thereisno need to
declare it final and an abstract constructor could never be implemented. A
constructor is always invoked with respect to an object, so it makes no sense for a
constructor to be static. There is no practical need for a constructor to be syn-
chronized, because it would lock the object under construction, which is nor-
mally not made available to other threads until al constructors for the object have
completed their work. The lack of native constructors is an arbitrary language
design choice that makesit easy for an implementation of the Javavirtual machine
to verify that superclass constructors are always properly invoked during object
creation.

Note that a ConstructorModifier cannot be declared strictfp. This differ-
ence in the definitions for ConstructorModifier and MethodModifier (88.4.3) isan
intentional language design choice; it effectively ensures that a constructor is FP-
strict (815.4) if and only if its classis FP-strict.

8.8.3

241

884

242

Generic Constructors CLASSES

8.8.4 Generic Constructors

It is possible for a constructor to be declared generic, independently of whether
the class the constructor is declared in isitself generic. A constructor is generic if
it declares one or more type variables (84.4). These type variables are known as
the formal type parameters of the constructor. The form of the formal type param-
eter list is identical to a type parameter list of a generic class or interface, as
described in §8.1.2.

The scope of a constructor’s type parameter is the entire declaration of the
constructor, including the type parameter section itself. Therefore, type parame-
ters can appear as parts of their own bounds, or as bounds of other type parameters
declared in the same section.

Type parameters of generic constructor need not be provided explicitly when
a generic constructor is invoked. When they are not provided, they are inferred as
specified in §15.12.2.7.

8.8.5 Constructor Throws

The throws clause for a constructor is identical in structure and behavior to the
throws clause for amethod (§8.4.6).

8.8.6 TheTypeof a Constructor

Thetype of aconstructor consists of its signature and the exception types given its
throws clause.

8.8.7 Constructor Body

Thefirst statement of a constructor body may be an explicit invocation of another
constructor of the same class or of the direct superclass (88.8.7.1).

Constructor Body:
{ ExplicitConstructorInvocationg, BlockStatementsyy }

It is a compile-time error for a constructor to directly or indirectly invoke
itself through a series of one or more explicit constructor invocations involving
this. If the constructor is a constructor for an enum type (88.9), it is a compile-
time error for it to invoke the superclass constructor explicitly.

If a constructor body does not begin with an explicit constructor invocation
and the constructor being declared is not part of the primordial classObject, then
the constructor body isimplicitly assumed by the compiler to begin with a super-

CLASSES Constructor Body

class constructor invocation “super();”, an invocation of the constructor of its
direct superclass that takes no arguments.

Except for the possibility of explicit constructor invocations, the body of a
constructor is like the body of a method (88.4.7). A return statement (814.17)
may be used in the body of a constructor if it does not include an expression.

In the example:

class Point {

int x, y;

Point(int x, int y) { this.x = x; this.y = vy; }
3
class ColoredPoint extends Point {

static final int WHITE = 0, BLACK = 1;

int color;

ColoredPoint(int x, int y) {
this(x, y, WHITE);

}

ColoredPoint(int x, int y, int color) {
super(x, y);
this.color = color;

3

}

the first constructor of ColoredPoint invokes the second, providing an additional
argument; the second constructor of ColoredPoint invokes the constructor of its
superclass Point, passing along the coordinates.

812.5 and §15.9 describe the creation and initialization of new classinstances.

8.8.7.1 Explicit Constructor Invocations

ExplicitConstructor I nvocation:
NonWIdTypeArgumentsyp this (- Argumentlistoy) ;
NonWIdTypeArgumentsop super (- ArgumentListyy) ;
Primary. NonWIdTypeArgumentsyp: super (- ArgumentListyy) ;

NonW IdTypeArguments:
< ReferenceTypelist >

ReferenceTypelist:
ReferenceType
ReferenceTypelist , ReferenceType

8.8.7

243

8.8.7 Constructor Body CLASSES

Explicit constructor invocation statements can be divided into two kinds:

 Alternate constructor invocations begin with the keyword this (possibly
prefaced with explicit type arguments). They are used to invoke an alternate
constructor of the same class.

» Superclass constructor invocations begin with either the keyword super (pos-
sibly prefaced with explicit type arguments) or a Primary expression. They
are used to invoke a constructor of the direct superclass. Superclass construc-
tor invocations may be further subdivided:

o Ungualified superclass constructor invocations begin with the keyword
super (possibly prefaced with explicit type arguments).

o Qualified superclass constructor invocations begin with a Primary expres-
sion . They alow a subclass constructor to explicitly specify the newly cre-
ated object’'s immediately enclosing instance with respect to the direct
superclass (88.1.3). This may be necessary when the superclassis an inner
class.

Here is an example of a qualified superclass constructor invocation:
class Outer {
class Inner{}

}

class ChildOfInner extends Outer.Inner {
Chi1dOfInner() {(new Outer()).super();}
}

An explicit constructor invocation statement in a constructor body may not
refer to any instance variables or instance methods declared in this class or any
superclass, or use this or super in any expression; otherwise, a compile-time
€rror OCcurs.

For example, if the first constructor of ColoredPoint in the example above
were changed to:

ColoredPoint(int x, int y) {

this(x, y, color);

}
then a compile-time error would occur, because an instance variable cannot be
used within a superclass constructor invocation.

An explicit constructor invocation statement can throw an exception type E iff

either:
» Some subexpression of the constructor invocation’s parameter list can throw
E; or

244

CLASSES Constructor Body 8.8.7

» Eisdeclared in the throws clause of the constructor that is invoked.

If an anonymous class instance creation expression appears within an explicit
constructor invocation statement, then the anonymous class may not refer to any
of the enclosing instances of the class whose constructor is being invoked.

For example:

class Top {

int x;
class Dummy {
Dummy (Object o) {}

}
class Inside extends Dummy {
Inside() {
super(new Object() { int r = x; }); // error
}
Inside(final int y) {
super(new Object() { int r = y; }); // correct
}
}

}
Let C bethe class being instantiated, let S be the direct superclass of C, and let i be
the instance being created. The evaluation of an explicit constructor invocation
proceeds as follows:

* Firgt, if the constructor invocation statement is a superclass constructor invo-
cation, then the immediately enclosing instance of i with respect to s (if any)
must be determined. Whether or not i has an immediately enclosing instance
with respect to S is determined by the superclass constructor invocation as fol-
lows:

o If Sisnot aninner class, or if the declaration of S occursin a static context,
no immediately enclosing instance of i with respect to S exists. A compile-
time error occurs if the superclass constructor invocation is a qualified
superclass constructor invocation.

o Otherwise:

o If the superclass constructor invocation is qualified, then the Primary
expression p immediately preceding " . super” isevaluated. If the primary
expression evaluates to null, a Nul1PointerException is raised, and
the superclass constructor invocation completes abruptly. Otherwise, the
result of this evaluation is the immediately enclosing instance of i with

245

8.8.8 Constructor Overloading CLASSES

respect to S. Let 0 be theimmediately lexically enclosing classof s; itisa
compile-time error if the type of p isnot 0 or a subclass of 0.

o Otherwise:

o If sisalocal class (814.3), thenlet 0 betheinnermost lexically enclos-
ing class of S. Let n be aninteger such that 0 isthe nth lexically enclos-
ing class of C. The immediately enclosing instance of i with respect to
S isthe nth lexically enclosing instance of this.

o Otherwise, S isaninner member class (88.5). It is a compile-time error
if s isnot amember of alexically enclosing class, or of a superclass or
superinterface thereof. Let 0 be the innermost lexically enclosing class
of which s is a member, and let n be an integer such that 0 is the nth
lexically enclosing class of C. The immediately enclosing instance of i
with respect to S isthe nth lexically enclosing instance of this.

» Second, the arguments to the constructor are evaluated, left-to-right, asin an
ordinary method invocation.

¢ Next, the constructor isinvoked.

» Finaly, if the constructor invocation statement is a superclass constructor
invocation and the constructor invocation statement completes normally, then
al instance variable initializers of ¢ and al instance initializers of C are exe-
cuted. If an instance initializer or instance variable initializer I textualy pre-
cedes another instance initializer or instance variable initidlizer J, then 1 is
executed before J. This action is performed regardless of whether the super-
class constructor invocation actually appears as an explicit constructor invoca-
tion statement or is provided automatically. An alternate constructor
invocation does not perform this additional implicit action.

8.8.8 Constructor Overloading

Overloading of constructors is identical in behavior to overloading of methods.
The overloading is resolved at compile time by each class instance creation
expression (815.9).

246

CLASSES Default Constructor

8.8.9 Default Constructor

If a class contains no constructor declarations, then a default constructor that
takes no parameters is automatically provided:

* If the class being declared is the primordial class Object, then the default
constructor has an empty body.

 Otherwise, the default constructor takes no parameters and simply invokes the
superclass constructor with no arguments.

A compile-time error occurs if a default constructor is provided by the com-
piler but the superclass does not have an accessible constructor that takes no argu-
ments.

A default constructor has no throws clause.

It followsthat if the nullary constructor of the superclass hasa throws clause,
then a compile-time error will occur.

In an enum type (88.9), the default constructor isimplicitly private. Other-
wise, if the class is declared public, then the default constructor is implicitly
given the access modifier pub1ic (86.6); if the classis declared protected, then
the default constructor is implicitly given the access modifier protected (86.6);
if the classis declared private, then the default constructor isimplicitly given the
access modifier private (86.6); otherwise, the default constructor has the default
access implied by no access modifier.

Thus, the example:

public class Point {

int x, y;

}
is equivalent to the declaration:

public class Point {

int x, y;
public Point() { super(Q; }

}
where the default constructor is pub1i ¢ because the class Point ispublic.

The rule that the default constructor of a class has the same access modifier as
the classitself is ssmple and intuitive. Note, however, that this does not imply that
the constructor is accessible whenever the classis accessible. Consider

package p1l;

public class Outer {
protected class Inner{}
b

8.8.9

247

8.8.10 Preventing Instantiation of a Class CLASSES

248

package p2;

class SonOfOuter extends pl.Outer {
void foo() {
new Inner(); // compile-time access error
3

}

The constructor for Inner is protected. However, the constructor is protected rela-
tive to Inner, while Inner is protected relative to Outer. So, Inner is accessible
in Son0OfOuter, sinceit isasubclass of Outer. Inner’s constructor is not accessi-
ble in Son0fOuter, because the class SonOfOuter is not a subclass of Inner!
Hence, even though Inner isaccessible, its default constructor is not.

8.8.10 Preventing Instantiation of a Class

A class can be designed to prevent code outside the class declaration from creat-
ing instances of the class by declaring at |east one constructor, to prevent the cre-
ation of an implicit constructor, and declaring all constructors to be private. A
pub1ic class can likewise prevent the creation of instances outside its package by
declaring at least one constructor, to prevent creation of a default constructor with
pub1ic access, and declaring no constructor that ispublic.

Thus, in the example:

class ClassOnly {

private ClassOnly() { }
static String just = "only the Tonely";
3

the class C1assOn1y cannot be instantiated, while in the example:
package just;

public class PackageOnly {

PackageOnly() { }
String[] justDesserts = { "cheesecake", "ice cream" };

the class PackageOnly can be instantiated only within the package just, in
which it is declared.

CLASSES Enums

8.9 Enums

An enum declaration has the form:

EnumDeclaration:
ClassModifiersyy; enum Identifier Interfacesyy: EnumBody

EnumBody:
{ EnumConstantsypt ,opt EnNumBodyDeclarationsypt }

The body of an enum type may contain enum constants. An enum constant defines
an instance of the enum type. An enum type has no instances other than those
defined by its enum constants.

DiscussioN

It is a compile-time error to attempt to explicitly instantiate an enum type (815.9.1). The final
clone method in Enum ensures that enum constants can never be cloned, and the special
treatment by the serialization mechanism ensures that duplicate instances are never cre-
ated as a result of deserialization. Reflective instantiation of enum types is prohibited.
Together, these four things ensure that no instances of an enum type exist beyond those
defined by the enum constants.

Because there is only one instance of each enum constant, it is permissible to use the
== operator in place of the equals method when comparing two object references if it is
known that at least one of them refers to an enum constant. (The equals method in Enum
is a final method that merely invokes super.equals on its argument and returns the
result, thus performing an identity comparison.)

EnumConstants:
EnumConstant
EnumConstants , EnumConstant

EnumConstant:
Annotations | dentifier Argumentsy,: ClassBodyopt

Arguments:
(ArgumentListop)

EnumBodyDeclarations:
; ClassBodyDeclarationsyp

8.9

249

8.9

250

Enums CLASSES

An enum constant may be preceded by annotation (89.7) modifiers. If an
annotation a on an enum constant corresponds to an annotation type T, and T has
a (meta-)annotation m that corresponds to annotation.Target, then m must have
an element whose value is annotation.ElementType.FIELD, or acompile-time
€rror OCCurs.

An enum constant may be followed by arguments, which are passed to the
constructor of the enum type when the constant is created during class initializa-
tion as described later in this section. The constructor to be invoked is chosen
using the normal overloading rules (815.12.2). If the arguments are omitted, an
empty argument list is assumed. If the enum type has no constructor declarations,
a parameterless default constructor is provided (which matches the implicit empty
argument list). This default constructor isprivate.

The optional class body of an enum constant implicitly defines an anonymous
class declaration (815.9.5) that extends the immediately enclosing enum type. The
class body is governed by the usual rules of anonymous classes; in particular it
cannot contain any constructors.

DiscussioN

Instance methods declared in these class bodies are may be invoked outside the enclosing
enum type only if they override accessible methods in the enclosing enum type.

Enum types (88.9) must not be declared abstract; doing so will result in a
compile-time error. It is a compile-time error for an enum type E to have an
abstract method m as a member unless E has one or more enum constants, and all
of E's enum constants have class bodies that provide concrete implementations of
m. It isacompile-time error for the class body of an enum constant to declare an
abstract method.

An enum type is implicitly final unless it contains at least one enum con-
stant that has a class body. In any case, it is a compile-time error to explicitly
declare an enum type to be final.

Nested enum types are implicitly static. It is permissable to explicitly
declare anested enum typeto be static.

CLASSES Enums

DiscussioN

This implies that it is impossible to define a local (§14.3) enum, or to define an enum in an
inner class (§88.1.3).

Any constructor or member declarations within an enum declaration apply to
the enum type exactly as if they had been present in the class body of a normal
class declaration unless explicitly stated otherwise.

The direct superclass of an enum type named E is Enum<E>. In addition to the
members it inherits from Enum<E>, for each declared enum constant with the
name n the enum type has an implicitly declared public static final field
named n of type E. Thesefields are considered to be declared in the same order as
the corresponding enum constants, before any static fields explicitly declared in
the enum type. Each such field isinitialized to the enum constant that corresponds
toit. Each such field is aso considered to be annotated by the same annotations as
the corresponding enum constant. The enum constant is said to be created when
the corresponding field isinitialized.

It isacompile-time error for an enum to declare afinalizer. An instance of an
enum may never be finalized.

In addition, if E is the name of an enum type, then that type has the following
implicitly declared static methods:

/:': *

* Returns an array containing the constants of this enum

* type, in the order they’re declared. This method may be
used to iterate over the constants as follows:

oo
%

*

* for(E c : E.values())
* System.out.printin(c);

* @return an array containing the constants of this enum
* type, in the order they’re declared
*/

public static E[] values();
* Returns the enum constant of this type with the specified
* name.

* The string must match exactly an identifier used to declare
* an enum constant in this type. (Extraneous whitespace
* characters are not permitted.)

oo
*

* @return the enum constant with the specified name

8.9

251

8.9

252

Enums CLASSES

* @throws IllegalArgumentException if this enum type has no
* constant with the specified name

*/

public static E valueOf(String name);

DiscussioN

It follows that enum type declarations cannot contain fields that conflict with the enum con-
stants, and cannot contain methods that conflict with the automatically generated methods
(vaTlues() and valueOf(String)) or methods that override the final methods in Enum:
(equals(Object), hashCode(), clone(), compareTo(Object), name(), ordi-
nal(), and getDeclaringClass()).

It is acompile-time error to reference a static field of an enum type that is not
a compile-time constant (815.28) from constructors, instance initializer blocks, or
instance variable initializer expressions of that type. It is a compile-time error for
the constructors, instance initializer blocks, or instance variable initializer expres-
sions of an enum constant e to refer to itself or to an enum constant of the same
type that is declared to theright of e.

DiscussioN

Without this rule, apparently reasonable code would fail at run time due to the initialization
circularity inherent in enum types. (A circularity exists in any class with a "self-typed" static
field.) Here is an example of the sort of code that would fail:
enum Color {
RED, GREEN, BLUE;
static final Map<String,Color> colorMap =
new HashMap<String,Color>Q);
Color(Q) {
colorMap.put(toString(), this);
}

}

Static initialization of this enum type would throw a Nu1T1PointerException because the
static variable colorMap is uninitialized when the constructors for the enum constants run.
The restriction above ensures that such code won't compile.

CLASSES Enums

Note that the example can easily be refactored to work properly:
enum Color {

RED, GREEN, BLUE;

static final Map<String,Color> colorMap =

new HashMap<String,Color>Q);
static {
for (Color c : Color.values())
colorMap.put(c.toString(), c);

}

The refactored version is clearly correct, as static initialization occurs top to bottom.

DiscussioN

Here is program with a nested enum declaration that uses an enhanced for loop to iterate
over the constants in the enum:
public class Examplel {
public enum Season { WINTER, SPRING, SUMMER, FALL }

public static void main(String[] args) {
for (Season s : Season.values())
System.out.println(s);

}

Running this program produces the following output:
WINTER

SPRING
SUMMER
FALL

Here is a program illustrating the use of EnumSet to work with subranges:
import java.util.¥*;

public class Example2 {
enum Day { MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATUR-
DAY, SUNDAY }

public static void main(String[] args) {
System.out.print("Weekdays: ");
for (Day d : EnumSet.range(Day.MONDAY, Day.FRIDAY))
System.out.print(d + " ");
System.out.printin(Q;

8.9

253

8.9 Enums CLASSES

Running this program produces the following output:

Weekdays: MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY
EnumSet contains a rich family of static factories, so this technique can be generalized to
work non-contiguous subsets as well as subranges. At first glance, it might appear wasteful
to generate an EnumSet for a single iteration, but they are so cheap that this is the recom-
mended idiom for iteration over a subrange. Internally, an EnumSet is represented with a
single long assuming the enum type has 64 or fewer elements.

Here is a slightly more complex enum declaration for an enum type with an explicit
instance field and an accessor for this field. Each member has a different value in the field,
and the values are passed in via a constructor. In this example, the field represents the
value, in cents, of an American coin. Note, however, that their are no restrictions on the
type or number of parameters that may be passed to an enum constructor.

pubTic enum Coin {

PENNY (1), NICKEL(5), DIME(10), QUARTER(25);

Coin(Cint value) { this.value = value; }
private final int value;

public int value() { return value; }

}

Switch statements are useful for simulating the addition of a method to an enum type from
outside the type. This example "adds" a color method to the Coin type, and prints a table of
coins, their values, and their colors.
pubTlic class CoinTest {
public static void main(String[] args) {
for (Coin c : Coin.values(Q))
System.out.printin(c + ": "+ c.value() +"¢ " +
color(c));

private enum CoinColor { COPPER, NICKEL, SILVER }

private static CoinColor color(Coin c) {
switch(c) {
case PENNY:
return CoinColor.COPPER;
case NICKEL:
return CoinColor.NICKEL;
case DIME: case QUARTER:
return CoinColor.SILVER;
default:

throw new AssertionError("Unknown coin: " + c);
}
}
}
Running the program prints:
PENNY: 1¢ COPPER
NICKEL: 5¢ NICKEL

254

CLASSES Enums

DIME: 10¢ SILVER
QUARTER: 25¢ SILVER

In the following example, a playing card class is built atop two simple enum types. Note that
each enum type would be as long as the entire example in the absence of the enum facility:
import java.util.¥*;
public class Card implements Comparable<Card>, java.io.Serializable

{

public enum Rank { DEUCE, THREE, FOUR, FIVE, SIX, SEVEN, EIGHT,
NINE, TEN,JACK, QUEEN, KING, ACE }

public enum Suit { CLUBS, DIAMONDS, HEARTS, SPADES }

private final Rank rank;

private final Suit suit;

private Card(Rank rank, Suit suit) {
if (rank == null || suit == null)
throw new NullPointerException(rank + ", " + suit);
this.rank = rank;
this.suit = suit;

}

public Rank rank() { return rank; }
public Suit suit() { return suit; }
public String toString() { return rank + " of " + suit; }

// Primary sort on suit, secondary sort on rank
public int compareTo(Card c) {
int suitCompare = suit.compareTo(c.suit);
return (suitCompare != 0 7?7 suitCompare : rank.comp-
areTo(c.rank));

private static final List<Card> prototypeDeck = new Arrayl-
ist<Card>(52);

static {
for (Suit suit : Suit.values())
for (Rank rank : Rank.values())
prototypeDeck.add(new Card(rank, suit));
}

// Returns a new deck
public static List<Card> newDeck() {

return new Arraylist<Card>(prototypeDeck);
}

}

Here’s a little program that exercises the Card class. It takes two integer parameters on the
command line, representing the number of hands to deal and the number of cards in each
hand:
import java.util.*;
class Deal {
public static void main(String args[]) {

8.9

255

8.9

256

Enums CLASSES

Integer.parselnt(args[0]);

int cardsPerHand = Integer.parseInt(args[1]);

List<Card> deck Card.newDeck();

Collections.shuffle(deck);

for (int i=0; i < numHands; i++)
System.out.printin(dealHand(deck, cardsPerHand));

int numHands

}
/* *

* Returns a new ArraylList consisting of the last n elements of
* deck, which are removed from deck. The returned list is
* sorted using the elements’ natural ordering.
7‘:/
public static <E extends Comparable<E>> ArraylList<E>
dealHand(List<E> deck, int n) {
int deckSize = deck.size();
List<E> handView = deck.subList(deckSize - n, deckSize);
ArrayList<E> hand = new ArraylList<E>(ChandView);
handView.clear(Q);
Collections.sort(hand);
return hand;

}

Running the program produces results like this:

java Deal 4 5

[FOUR of SPADES, NINE of CLUBS, NINE of SPADES, QUEEN of SPADES,
KING of SPADES]

[THREE of DIAMONDS, FIVE of HEARTS, SIX of SPADES, SEVEN of DIA-
MONDS, KING of DIAMONDS]

[FOUR of DIAMONDS, FIVE of SPADES, JACK of CLUBS, ACE of DIAMONDS,
ACE of HEARTS]

[THREE of HEARTS, FIVE of DIAMONDS, TEN of HEARTS, JACK of HEARTS,
QUEEN of HEARTS]

The next example demonstrates the use of constant-specific class bodies to attach behav-
iors to the constants. (It is anticipated that the need for this will be rare.):

import java.util.¥*;

pubTlic enum Operation {
PLUS {
doubTe eval(double x, double y) { return x + y; }
},

MINUS {
doubTe eval(double x, double y) { return x - y; }
},

TIMES {
doubTe eval(double x, double y) { return x * y; }

DiVIDED_BY {
doubTe eval(double x, double y) { return x / y; }
};

// Perform the arithmetic operation represented by this constant
// abstract double eval(double x, double y);

CLASSES Enums 8.9

public static void main(String args[]) {
doubTe x = Double.parseDouble(args[0]);
double y DoubTe.parseDouble(args[1]);

for (Operation op : Operation.values())

System.out.printin(x + + op + +y + = +
op.eval(x, y));
}

}

Running this program produces the following output:
java Operation 2.0 4.0
2.0 PLUS 4.0 = 6.0
2.0 MINUS 4.0 = -2.0
2.0 TIMES 4.0 = 8.0
2.0 DIVIDED_BY 4.0 = 0.5

The above pattern is suitable for moderately sophisticated programmers. It is admittedly a
bit tricky, but it is much safer than using a case statement in the base type (Operation), as
the pattern precludes the possibility of forgetting to add a behavior for a new constant
(you'd get a compile-time error).

257

8.9 Enums CLASSES

258

CHAPTER 9

|nterfaces

A N interface declaration introduces a new reference type whose members are
classes, interfaces, constants and abstract methods. This type has no implementa-
tion, but otherwise unrelated classes can implement it by providing implementa-
tions for its abstract methods.

A nested interface is any interface whose declaration occurs within the body
of another class or interface. A top-level interface is an interface that is not a
nested interface.

We distinguish between two kinds of interfaces - normal interfaces and anno-
tation types.

This chapter discusses the common semantics of all interfaces—normal inter-
faces and annotation types (89.6), top-level (8§7.6) and nested (88.5, §9.5). Details
that are specific to particular kinds of interfaces are discussed in the sections dedi-
cated to these constructs.

Programs can use interfaces to make it unnecessary for related classesto share
acommon abstract superclass or to add methods to Object.

An interface may be declared to be a direct extension of one or more other
interfaces, meaning that it implicitly specifies al the member types, abstract
methods and constants of the interfaces it extends, except for any member types
and constants that it may hide.

A class may be declared to directly implement one or more interfaces, mean-
ing that any instance of the class implements all the abstract methods specified by
the interface or interfaces. A class necessarily implements all the interfaces that its
direct superclasses and direct superinterfaces do. This (multiple) interface inherit-
ance allows objects to support (multiple) common behaviors without sharing any
implementation.

259

9.1

260

Interface Declarations INTERFACES

A variable whose declared type is an interface type may have as its value a
reference to any instance of a class which implements the specified interface. It is
not sufficient that the class happen to implement all the abstract methods of the
interface; the class or one of its superclasses must actually be declared to imple-
ment the interface, or else the classis hot considered to implement the interface.

9.1 Interface Declarations

An interface declaration specifies a new named reference type. There are two
kinds of interface declarations - normal interface declarations and annotation
type declarations:
InterfaceDeclaration:
NormallnterfaceDeclaration
AnnotationTypeDeclaration

Annotation types are described further in §9.6.

Normal I nterfaceDeclaration:
InterfaceModifiersyy interface Identifier TypeParametersyy
Extendsinterfacesyy InterfaceBody

The Identifier in an interface declaration specifies the name of the interface. A
compile-time error occurs if an interface has the same simple name as any of its
enclosing classes or interfaces.

9.1.1 Interface Modifiers

An interface declaration may include interface modifiers:

InterfaceModifiers:
InterfaceModifier
InterfaceModifiers InterfaceModifier

InterfaceModifier: one of
Annotation public protected private
abstract static strictfp

The access modifier pub1ic isdiscussed in 8§6.6. Not al modifiers are appli-
cable to all kinds of interface declarations. The access modifiers protected and
private pertain only to member interfaces within a directly enclosing class dec-
laration (88.5) and are discussed in §8.5.1. The access modifier static pertains
only to member interfaces (88.5, 89.5). A compile-time error occurs if the same

INTERFACES Superinterfaces and Subinterfaces

modifier appears more than once in an interface declaration. If an annotation a on
an interface declaration corresponds to an annotation type T, and T has a (meta-
)annotation m that corresponds to annotation.Target, then m must have an ele-
ment whose value is annotation.ETlementType.TYPE, or a compile-time error
occurs. Annotation modifiers are described further in 89.7.

9.1.1.1 abstract Interfaces

Every interface is implicitly abstract. This modifier is obsolete and should not
be used in new programs.

9.1.1.2 strictfp Interfaces

The effect of the strictfp modifier isto make al float or double expressions
within the interface declaration be explicitly FP-strict (815.4).

This implies that all nested types declared in the interface are implicitly
strictfp.

9.1.2 Generic Interfacesand Type Parameters

Aninterfaceis genericif it declares one or more type variables (84.4). These type
variables are known as the type parameters of the interface. The type parameter
section follows the interface name and is delimited by angle brackets. It defines
one or more type variables that act as parameters. A generic interface declaration
defines a set of types, one for each possible invocation of the type parameter sec-
tion. All parameterized types share the same interface at runtime.

The scope of an interface's type parameter is the entire declaration of the
interface including the type parameter section itself. Therefore, type parameters
can appear as parts of their own bounds, or as bounds of other type parameters
declared in the same section.

It is a compile-time error to refer to a type parameter of an interface | any-
where in the declaration of afield or type member of I.

9.1.3 Superinterfacesand Subinterfaces

If an extends clause is provided, then the interface being declared extends each
of the other named interfaces and therefore inherits the member types, methods,
and constants of each of the other named interfaces. These other named interfaces
are the direct superinterfaces of the interface being declared. Any class that
implements the declared interface is also considered to implement al the inter-
faces that thisinterface extends.

9.13

261

9.13

262

Superinterfaces and Subinterfaces INTERFACES

Extendsl nterfaces:
extends InterfaceType
ExtendsInterfaces , InterfaceType

Thefollowing is repeated from 84.3 to make the presentation here clearer:

InterfaceType:
TypeDecl Soecifier TypeArgumentsypt

Given a (possibly generic) interface declaration for 1<Fq, ..., Fn>, n>0, the
direct superinterfaces of the interface type (84.5) I1<Fq, ..., Fo> are the types
given in the extends clause of the declaration of I if an extends clause is present.

LetI<Fq,..., Fn>, n> 0, be ageneric interface declaration. The direct super-
interfaces of the parameterized interface type 1<Tq, . . ., Tn>,wWhereTj, 1<i<n,
isatype, are dl types J<Uq theta , ..., Uk theta>, where J<Uq, ..., Ue>isa
direct superinterface of 1<Fq, ..., Fn>, and theta is the substitution [Fq = Tq, ...,
Fn:=Thl.

Each InterfaceType in the extends clause of an interface declaration must
name an accessible interface type; otherwise a compile-time error occurs.

An interface 1 directly depends on atype T if T is mentioned in the extends
clause of 1 either as a superinterface or as aqualifier within a superinterface name.
An interface 1 depends on a reference type T if any of the following conditions
hold:

I directly dependsonT.
« | directly depends on aclass C that depends (88.1.5) on T.

* I directly depends on an interface J that depends on T (using this definition
recursively).

A compile-time error occursif an interface depends on itself.

While every class is an extension of classObject, thereis no single interface
of which all interfaces are extensions.

The superinterface relationship is the transitive closure of the direct super-
interface relationship. An interface K is a superinterface of interface 1 if either of
thefollowing istrue:

» K isadirect superinterface of 1.

» There exists an interface J such that K is a superinterface of J, and J is a
superinterface of 1, applying this definition recursively.

Interface 1 is said to be a subinterface of interface K whenever K is a superinter-
faceof 1.

INTERFACES Interface Members

9.1.4 Interface Body and Member Declarations

The body of an interface may declare members of the interface:

InterfaceBody:
{ InterfaceMemberDeclarationsy, }

InterfaceMember Declarations:
InterfaceMember Declaration
InterfaceMemberDeclarations |InterfaceMemberDeclaration

InterfaceMember Declaration:
ConstantDeclaration
AbstractMethodDeclaration
ClassDeclaration
InterfaceDeclaration
The scope of the declaration of a member m declared in or inherited by an
interface type 1 isthe entire body of 1, including any nested type declarations.

9.1.5 Accessto Interface Member Names

All interface members are implicitly public. They are accessible outside the
package where the interface is declared if the interface is also declared pub1ic or
protected, in accordance with the rules of 86.6.

9.2 Interface Members

The members of an interface are:
* Those members declared in the interface.
» Those members inherited from direct superinterfaces.

* If an interface has no direct superinterfaces, then the interface implicitly
declares a public abstract member method m with signature s, return type r,
and throws clause t corresponding to each public instance method m with
signature s, returntype r, and throws clause t declared in Object, unlessa
method with the same signature, same return type, and a compatible throws
clause is explicitly declared by the interface. It is a compile-time error if the
interface explicitly declares such a method m in the case where m is declared to
be final in Object.

9.2

263

9.3

264

Field (Constant) Declarations INTERFACES

It follows that is acompile-time error if the interface declares a method with a
signature that is override-equivalent (88.4.2) to a public method of Object, but
has a different return type or incompatible throws clause.

The interface inherits, from the interfaces it extends, all members of those
interfaces, except for fields, classes, and interfaces that it hides and methods that it
overrides.

9.3 Field (Constant) Declarations

ConstantDeclaration:
ConstantModifiersyy; Type VariableDeclarators ;

ConstantModifiers:
ConstantModifier
ConstantModifier ConstantModifers

ConstantModifier: one of
Annotation public static final

Every field declaration in the body of an interface is implicitly public,
static, and final. It is permitted to redundantly specify any or all of these mod-
ifiersfor such fields.

If an annotation a on afield declaration corresponds to an annotation type T,
and T has a (meta-)annotation m that corresponds to annotation.Target, thenm
must have an element whose value is annotation.ElementType.FIELD, or a
compile-time error occurs. Annotation modifiers are described further in §9.7.

If the interface declares a field with a certain name, then the declaration of
that field is said to hide any and all accessible declarations of fields with the same
name in superinterfaces of the interface.

It is a compile-time error for the body of an interface declaration to declare
two fields with the same name.

It is possible for an interface to inherit more than one field with the same
name (88.3.3.3). Such a situation does not in itself cause a compile-time error.
However, any attempt within the body of the interface to refer to either field by its
simple name will result in a compile-time error, because such a reference is
ambiguous.

INTERFACES Examples of Field Declarations

There might be severa paths by which the same field declaration might be
inherited from an interface. In such a situation, the field is considered to be inher-
ited only once, and it may be referred to by its simple name without ambiguity.

9.3.1 Initialization of Fieldsin Interfaces

Every field in the body of an interface must have an initialization expression,
which need not be a constant expression. The variable initiaizer is evaluated and
the assignment performed exactly once, when the interface isinitialized (812.4).
A compile-time error occurs if an initialization expression for an interface
field contains a reference by simple name to the same field or to another field
whose declaration occurs textually later in the same interface.
Thus:
interface Test {
float f = j;
int j 1;
int k k+1;

1 =

}

causes two compile-time errors, because j is referred to in the initialization of £
before j is declared and because theinitialization of k refersto k itself.

One subtlety hereis that, at run time, fields that are initialized with compile-
time constant values are initialized first. This appliesasoto static final fields
in classes (88.3.2.1). This means, in particular, that these fields will never be
observed to have their default initial values (84.12.5), even by devious programs.
See 812.4.2 and 813.4.9 for more discussion.

If the keyword this (815.8.3) or the keyword super (15.11.2, 15.12) occurs
inaninitialization expression for afield of an interface, then unless the occurrence
iswithin the body of an anonymous class (§15.9.5), a compile-time error occurs.

9.3.2 Examplesof Field Declarations

The following exampleillustrates some (possibly subtle) points about field decla-
rations.

9.3.2.1 Ambiguous Inherited Fields

If two fields with the same name are inherited by an interface because, for exam-
ple, two of its direct superinterfaces declare fields with that name, then a single
ambiguous member results. Any use of this ambiguous member will result in a
compile-time error.

9.3.2

265

94

266

Abstract Method Declarations INTERFACES

Thusin the example:
interface BaseColors {
int RED = 1, GREEN = 2, BLUE = 4;
}

interface RainbowColors extends BaseColors {
int YELLOW = 3, ORANGE = 5, INDIGO = 6, VIOLET = 7;
}

interface PrintColors extends BaseColors {
int YELLOW = 8, CYAN = 16, MAGENTA = 32;
}

interface LotsOfColors extends RainbowColors, PrintColors {
int FUCHSIA = 17, VERMILION = 43, CHARTREUSE = RED+90;
3

the interface LotsOfColors inherits two fields named YELLOW. Thisisal right as
long as the interface does not contain any reference by simple name to the field
YELLOW. (Such areference could occur within avariable initializer for afield.)

Even if interface PrintColors wereto give the value 3 to YELLOW rather than
the value 8, a reference to field YELLOW within interface LotsOfColors would
still be considered ambiguous.

9.3.2.2 Multiply Inherited Fields

If asingle field is inherited multiple times from the same interface because, for
example, both this interface and one of this interface’s direct superinterfaces
extend the interface that declares the field, then only a single member results. This
situation does not in itself cause a compile-time error.

In the example in the previous section, the fields RED, GREEN, and BLUE are
inherited by interface LotsOfColors in more than one way, through interface
RainbowColors and aso through interface PrintColors, but the reference to
field RED in interface LotsOfColors is not considered ambiguous because only
one actual declaration of the field RED isinvolved.

9.4 Abstract Method Declarations

AbstractMethodDecl aration:
AbstractMethodModifiers,y TypeParametersy, ResultType
MethodDeclarator Throwsyy ;

AbstractMethodModifiers:
AbstractMethodModifier
AbstractMethodModifiers AbstractMethodModifier

INTERFACES Inheritance and Overriding

AbstractMethodModifier: one of
Annotation public abstract

The access modifier pub1icisdiscussedin 86.6. A compile-time error occurs
if the same modifier appears more than once in an abstract method declaration.

Every method declaration in the body of an interface isimplicitly abstract,
so its body is always represented by a semicolon, not a block.

Every method declaration in the body of an interfaceisimplicitly pub1ic.

For compatibility with older versions of the Java platform, it is permitted but
discouraged, as a matter of style, to redundantly specify the abstract modifier
for methods declared in interfaces.

It is permitted, but strongly discouraged as a matter of style, to redundantly
specify the pub1ic modifier for interface methods.

Note that a method declared in an interface must not be declared static, or a
compile-time error occurs, because static methods cannot be abstract.

Note that a method declared in an interface must not be declared strictfp
or native or synchronized, or acompile-time error occurs, because those key-
words describe implementation properties rather than interface properties. How-
ever, amethod declared in an interface may be implemented by a method that is
declared strictfp or native or synchronized in a class that implements the
interface.

If an annotation a on a method declaration corresponds to an annotation type
T, and T has a (meta-)annotation m that correspondsto annotation.Target, then
m must have an element whose value is annotation.ElementType.METHOD, Or a
compile-time error occurs. Annotation modifiers are described further in §9.7.

It is a compile-time error for the body of an interface to declare, explicitly or
implicitly, two methods with override-equivalent signatures (88.4.2). However, an
interface may inherit several methods with such signatures (89.4.1).

Note that a method declared in an interface must not be declared final or a
compile-time error occurs. However, a method declared in an interface may be
implemented by a method that is declared final in a class that implements the
interface.

A method in an interface may be generic. The rules for formal type parame-
ters of a generic method in an interface are the same as for a generic method in a
class (88.4.4).

9.4.1 Inheritance and Overriding

An instance method m; declared in an interface 1 overrides another instance
method, my, declared in interface J iff both of the following are true:

1. 1 isasubinterface of J.

94.1

267

94.2

268

Overloading INTERFACES

2. The signature of mq isa subsignature (88.4.2) of the signature of m,.

If amethod declaration d1 with return type R overrides or hides the declaration of
another method d, with return type Ry, then d1 must be return-type-substitutable
(88.4.5) for do, or acompile-time error occurs. Furthermore, if R isnot a subtype
of Ry, an unchecked warning must be issued.

Moreover, a method declaration must not have a throws clause that conflicts
(88.4.6) with that of any method that it overrides; otherwise, a compile-time error
OCCUrs.

It isacompile time error if atype declaration T has a member method m; and
there exists a method m, declared in T or a supertype of T such that all of the fol-
lowing conditions hold:

* mq and my have the same name.
* myisaccessiblefromT.
» Thesignature of m1 is not a subsignature (88.4.2) of the signature of mo.

* mq or some method m; overrides (directly or indirectly) has the same erasure
asmy or some method my overrides (directly or indirectly).

Methods are overridden on a signature-by-signature basis. If, for example, an
interface declares two pub1ic methods with the same name, and a subinterface
overrides one of them, the subinterface till inherits the other method.

An interface inherits from its direct superinterfaces all methods of the super-
interfaces that are not overridden by a declaration in the interface.

It is possible for an interface to inherit several methods with override-equiva-
lent signatures (88.4.2). Such a situation does not in itself cause a compile-time
error. The interface is considered to inherit all the methods. However, one of the
inherited methods must must be return type substitutable for any other inherited
method; otherwise, a compile-time error occurs (The throws clauses do not cause
errorsin this case.)

There might be severa paths by which the same method declaration is inher-
ited from an interface. This fact causes no difficulty and never of itself resultsin a
compile-time error.

9.4.2 Overloading

If two methods of an interface (whether both declared in the same interface, or
both inherited by an interface, or one declared and one inherited) have the same
name but different signatures that are not override-equivalent (88.4.2), then the

INTERFACES Examples of Abstract Method Declarations

method name is said to be overloaded. This fact causes no difficulty and never of
itself resultsin acompile-time error. There is no required relationship between the
return types or between the throws clauses of two methods with the same name
but different signatures that are not override-equivalent.

9.4.3 Examplesof Abstract Method Declarations

The following examples illustrate some (possibly subtle) points about abstract
method declarations.

9.4.3.1 Example: Overriding

Methods declared in interfaces are abstract and thus contain no implementation.
About all that can be accomplished by an overriding method declaration, other
than to affirm a method signature, is to refine the return type or to restrict the
exceptions that might be thrown by an implementation of the method. Here is a
variation of the example shown in (§88.4.3.1):

class BufferEmpty extends Exception {
BufferkEmpty() { super(); }
BufferEmpty(String s) { super(s); }
3

class BufferException extends Exception {
BufferException() { super(); }
BufferException(String s) { super(s); }
}

public interface Buffer {
char get() throws BufferEmpty, BufferException;
3

public interface InfiniteBuffer extends Buffer {
char get() throws BufferException;// override

9.4.3.2 Example: Overloading

In the example code:

interface PointInterface {
void move(int dx, int dy);

}

interface RealPointInterface extends PointInterface {
void move(float dx, float dy);
void move(double dx, double dy);

}

94.3

269

9.5

270

Member Type Declarations INTERFACES

the method name move is overloaded in interface RealPointInterface with
three different signatures, two of them declared and one inherited. Any non-
abstract class that implements interface RealPointInterface must provide
implementations of all three method signatures.

9.5 Member Type Declarations

Interfaces may contain member type declarations (88.5). A member type declara-
tionin aninterfaceisimplicitly static and public.

If amember type declared with simple name C isdirectly enclosed within the
declaration of an interface with fully qualified name N, then the member type has
the fully qualified nameN . C.

If the interface declares a member type with a certain name, then the declara-
tion of that field is said to hide any and all accessible declarations of member
types with the same name in superinterfaces of the interface.

An interface inherits from its direct superinterfaces al the non-private mem-
ber types of the superinterfaces that are both accessible to code in the interface
and not hidden by a declaration in the interface.

An interface may inherit two or more type declarations with the same name.
A compile-time error occurs on any attempt to refer to any ambiguously inherited
class or interface by its simple name. If the same type declaration isinherited from
an interface by multiple paths, the class or interface is considered to be inherited
only once; it may be referred to by its simple name without ambiguity.

9.6 Annotation Types

An annotation type declaration is a special kind of interface declaration. To
distinguish an annotation type declaration from an ordinary interface declaration,
the keyword interface is preceded by an at sign (@).

INTERFACES Annotation Types

DiscussioN

Note that the at sign (@) and the keyword interface are two distinct tokens; technically it is
possible to separate them with whitespace, but this is strongly discouraged as a matter of
style.

AnnotationTypeDeclaration:
InterfaceModifiersop @ interface Identifier AnnotationTypeBody

AnnotationTypeBody:
{ AnnotationTypeElementDeclarati onsyp }

AnnotationTypeElementDeclarations:
AnnotationTypeElementDeclaration
AnnotationTypeElementDeclarations AnnotationTypeElementDeclaration

AnnotationTypeElementDeclaration:
AbstractMethodModifiersyy Type Identifier () DefaultValuegy ;
ConstantDeclaration
ClassDeclaration
InterfaceDeclaration
EnumDeclaration
AnnotationTypeDeclaration

DefaultValue:
default ElementValue

DiscussioN

The following restrictions are imposed on annotation type declarations by virtue of their
context free syntax:

« Annotation type declarations cannot be generic.

* No extends clause is permitted. (Annotation types implicitly extend annotation.Anno-
tation.)

« Methods cannot have any parameters

* Methods cannot have any type parameters

9.6

271

9.6

272

Annotation Types INTERFACES

* Method declarations cannot have a throws clause

Unless explicitly modified herein, al of the rules that apply to ordinary inter-
face declarations apply to annotation type declarations.

DiscussioN

For example, annotation types share the same namespace as ordinary class and interface
types.

Annotation type declarations are legal wherever interface declarations are legal, and
have the same scope and accessibility.

The Identifier in an annotation type declaration specifies the name of the
annotation type. A compile-time error occurs if an annotation type has the same
simple name as any of its enclosing classes or interfaces.

If an annotation a on an annotation type declaration corresponds to an annota-
tion type T, and T has a (meta-)annotation m that corresponds to annota-
tion.Target, then m must have either an element whose vaue is
annotation.ElementType.ANNOTATION_TYPE, or an element whose value is
annotation.ElementType.TYPE, Or acompile-time error occurs.

DiscussioN

By convention, no AbstractMethodModifiers should be present except for annotations.

The direct superinterface of an annotation type is dways annotation.Anno-
tation.

INTERFACES Annotation Types

DiscussioN

A consequence of the fact that an annotation type cannot explicitly declare a superclass or
superinterface is that a subclass or subinterface of an annotation type is never itself an
annotation type. Similarly, annotation.Annotation is not itself an annotation type.

It isacompile-time error if the return type of a method declared in an annota-
tion type is any type other than one of the following: one of the primitive types,
String, Class and any invocation of Class, an enum type (88.9), an annotation
type, or an array (810) of one of the preceding types. It is also a compile-time
error if any method declared in an annotation type has a signature that is override-
equivalent to that of any public or protected method declared in class Object
or intheinterface annotation.Annotation.

DiscussioN

Note that this does not conflict with the prohibition on generic methods, as wildcards elimi-
nate the need for an explicit type parameter.

Each method declaration in an annotation type declaration defines an element
of the annotation type. Annotation types can have zero or more elements. An
annotation type has no elements other than those defined by the methodsiit explic-
itly declares.

DiscussioN

Thus, an annotation type declaration inherits several members from annotation.Annota-
tion, including the implicitly declared methods corresponding to the instance methods in
Object, yet these methods do not define elements of the annotation type and it is illegal to
use them in annotations.

Without this rule, we could not ensure that the elements were of the types represent-
able in annotations, or that access methods for them would be available.

9.6

273

9.6 Annotation Types INTERFACES

It is a compile-time error if an annotation type T contains an element of type
T, either directly or indirectly.

DiscussioN

For example, this is illegal:
// I1legal self-reference!!

@interface SelfRef {
SelfRef value(Q);
h

and so is this:
// I1legal circularity!!

@interface Ping {
Pong value(Q);
3

@interface Pong {
Ping value(Q);
}

Note also that this specification precludes elements whose types are nested arrays. For
example, this annotation type declaration is illegal:
// ITlegal nested array!!

@interface Verboten {
String[][] value(Q);

An annotation type element may have a default value specified for it. Thisis
done by following its (empty) parameter list with the keyword default and the
default value of the element.

Defaults are applied dynamically at the time annotations are read; default val-
ues are not compiled into annotations. Thus, changing a default value affects
annotations even in classes that were compiled before the change was made (pre-
suming these annotations lack an explicit value for the defaulted element).

An ElementValue is used to specify a default value. It is a compile-time error
if the type of the element is not commensurate (89.7) with the default value speci-
fied. An ElementValue is always FP-strict (815.4).

274

INTERFACES Annotation Types

DiscussioN

The following annotation type declaration defines an annotation type with several ele-
ments:
// Normal annotation type declaration with several elements

/ ek
* Describes the "request-for-enhancement" (RFE)
* that Ted to the presence of
* the annotated API element.

* /

pubTlic @interface RequestForEnhancement {
int idQ; // Unique ID number associated with RFE
String synopsis(); // Synopsis of RFE
String engineer(); // Name of engineer who implemented RFE
String date(); // Date RFE was implemented

}

The following annotation type declaration defines an annotation type with no elements,
termed a marker annotation type:
// Marker annotation type declaration

/:':*

* Annotation with this type indicates that the specification of
the

* annotated API element 1is preliminary and subject to change.

:':/

public @interface Preliminary { }

By convention, the name of the sole element in a single-element annotation
typeisvalue.

DiscussioN

Linguistic support for this convention is provided by the single element annotation construct
(89.7); one must obey the convention in order to take advantage of the construct.

9.6

275

9.6

276

Annotation Types INTERFACES

DiscussioN

The convention is illustrated in the following annotation type declaration:
// Single-element annotation type declaration

/:': *
* Associates a copyright notice with the annotated API element.

:':/

public @interface Copyright {
String value(Q);

}

The following annotation type declaration defines a single-element annotation type whose
sole element has an array type:

// Single-element annotation type declaration with array-typed

// element

/:':*
* Associates a Tist of endorsers with the annotated class.
:':/
public @interface Endorsers {
String[] value(Q);

Here is an example of complex annotation types, annotation types that contain one or more
elements whose types are also annotation types.
// Complex Annotation Type

/:': *
* A person’s name. This annotation type is not designed to be used
* directly to annotate program elements, but to define elements
* of other annotation types.
:':/
pubTlic @interface Name {
String first(Q;
String last(Q);
3

/:':*
* Indicates the author of the annotated program element.
:':/
public @interface Author {
Name value(Q);
}

/7‘::“:
* Indicates the reviewer of the annotated program element.
:':/
pubTlic @interface Reviewer {
Name value(Q);
}

INTERFACES Predefined Annotation Types

The following annotation type declaration provides default values for two of its four ele-
ments:
// Annotation type declaration with defaults on some elements
public @interface RequestForEnhancement {
int idQ; // No default - must be specified in
// each annotation
String synopsis(); // No default - must be specified 1in
// each annotation
String engineer() default "[unassigned]";
String date() default "[unimplemented]";
3

The following annotation type declaration shows a Class annotation whose value is
restricted by a bounded wildcard.

// Annotation type declaration with bounded wildcard to

// restrict Class annotation

// The annotation type declaration below presumes the existence

// of this interface, which describes a formatter for Java

// programming Tanguage source code

pubTlic interface Formatter { ... }

// Designates a formatter to pretty-print the annotated class.
public @interface PrettyPrinter {
Class<? extends Formatter> value(Q);

}

Note that the grammar for annotation type declarations permits other element declarations
besides method declarations. For example, one might choose to declare a nested enum for
use in conjunction with an annotation type:
// Annotation type declaration with nested enum type declaration
public @interface Quality {
enum Level { BAD, INDIFFERENT, GOOD }

Level value(Q);

9.6.1 Predefined Annotation Types

Several annotation types are predefined in the libraries of the Java platform.
Some of these predefined annotation types have special semantics. These seman-
tics are specified in this section. This section does not provide a complete specifi-
cation for the predefined annotations contained here in; that is the role of the
appropriate API specifications. Only those semantics that require special behavior
on the part of the Java compiler or virtual machine are specified here.

9.6.1

277

9.6.1

278

Predefined Annotation Types INTERFACES

9.6.1.1 Target

The annotation type annotation.Target isintended to be used in meta-annota-
tions that indicate the kind of program element that an annotation type is applica-
ble to. Target has one element, of type annotation.ElementType[]. It isa
compile-time error if a given enum constant appears more than once in an annota-
tion whaose corresponding type is annotation.Target. See sections §7.4.1,
88.1.1, 88.3.1, 88.4.1, 88.4.3, §8.8.3, 88.9, 89.1.1, 89.3, 89.4, §9.6 and 814.4 for
the other effects of @annotation.Target annotations.

9.6.1.2 Retention

Annotations may be present only in the source code, or they may be present in the
binary form of aclass or interface. An annotation that is present in the binary may
or may not be available at run-time viathe reflective libraries of the Java platform.

The annotation type annotation.Retention is used to choose among the
above possihilities. If an annotation a correspondsto atype T, and T has a (meta
)annotation m that correspondsto annotation.Retention, then:

* |f m has an element whose value is annotation.RetentionPolicy.SOURCE,
then a Java compiler must ensure that a is not present in the binary representa-
tion of the class or interface in which a appears.

* |f m has an element whose value is annotation.RetentionPolicy.CLASS,
or annotation.RetentionPolicy.RUNTIME a Java compiler must ensure
that a is represented in the binary representation of the class or interface in
which a appears, unless m annotates a local variable declaration. An annota-
tion on alocal variable declaration is never retained in the binary representa-
tion.

If T does not have a (meta-)annotation m that corresponds to annota-
tion.Retention, then aJavacompiler must treat T asif it does have such ameta
annotation m with an element whose value is annotation.RetentionPol-
icy.CLASS.

DiscussioN

If m has an element whose value is annotation.RetentionPolicy.RUNTIME, the reflective
libraries of the Java platform will make a available at run-time as well.

INTERFACES Predefined Annotation Types 9.6.1

9.6.1.3 Inherited

The annotation type annotation.Inherited isused to indicate that annotations
on aclass C corresponding to a given annotation type are inherited by subclasses
of C.

9.6.1.4 Override

Programmers occasionally overload a method declaration when they mean to
override it.

DiscussioN

The classic example concerns the equals method. Programmers write the following:
public boolean equals(Foo that) { ... }
when they mean to write:
public boolean equals(Object that) { ... }
This is perfectly legal, but class Foo inherits the equals implementation from Object,
which can cause some very subtle bugs.

The annotation type Override supports early detection of such problems. If a
method declaration is annotated with the annotation @0verride, but the method
does not in fact override any method declared in a superclass, acompile-time error
will occur.

DiscussioN

Note that if a method overrides a method from a superinterface but not from a superclass,
using @Override will cause a compile-time error.

The rationale for this is that a concrete class that implements an interface will neces-
sarily override all the interface’s methods irrespective of the @Override annotation, and so
it would be confusing to have the semantics of this annotation interact with the rules for
implementing interfaces.

A by product of this rule is that it is never possible to use the @Override annotation in
an interface declaration.

279

9.6.1

280

Predefined Annotation Types INTERFACES

9.6.1.5 SuppressWarnings

The annotation type SuppressWarnings SUpports programmer control over
warnings otherwise issued by the Java compiler. It contains a single element that
isan array of String. If a program declaration is annotated with the annotation
@SuppressWarnings(value = {S1, -.- , Sk}), then aJava compiler must
not report any warning identified by oneof S1, ... , Sk if that warning would
have been generated as aresult of the annotated declaration or any of its parts.

Unchecked warnings are identified by the string "unchecked".

DiscussioN

Recent Java compilers issue more warnings than previous ones did, and these "lint-like"
warnings are very useful. It is likely that more such warnings will be added over time. To
encourage their use, there should be some way to disable a warning in a particular part of
the program when the programmer knows that the warning is inappropriate.

DiscussioN

Compiler vendors should document the warning names they support in conjunction with
this annotation type. They are encouraged to cooperate to ensure that the same names
work across multiple compilers.

9.6.1.6 Deprecated

A program element annotated @Deprecated is one that programmers are dis-
couraged from using, typically because it is dangerous, or because a better alter-
native exists. A Java compiler must produce a warning when a deprecated type,
method, field, or constructor is used (overridden, invoked, or referenced by name)
unless:

» Theuseiswithin an entity that itself isis annotated with the annotation @Dep-
recated; or

e The declaration and use are both within the same outermost class; or

INTERFACES Annotations 9.7

» The use site is within an entity that is annotated to suppress the warning with
the annotation @SuppressWarnings("deprecation")

Use of the annotation @Deprecated on aloca variable declaration or on a
parameter declaration has no effect.

9.7 Annotations

An annotation is a modifier consisting of the name of an annotation type
(89.6) and zero or more element-value pairs, each of which associates avalue with
adifferent element of the annotation type. The purpose of an annotation is simply
to associate information with the annotated program el ement.

Annotations must contain an element-value pair for every element of the cor-
responding annotation type, except for those elements with default values, or a
compile-time error occurs. Annotations may, but are not required to, contain ele-
ment-value pairs for elements with default val ues.

Annotations may be used as modifiers in any declaration, whether package
(87.4), class (88), interface, field (88.3, §9.3), method (88.4, §9.4), parameter,
constructor (88.8), or local variable (§14.4).

DiscussioN

Note that classes include enums (88.9), and interfaces include annotation types (89.6)

Annotations may also be used on enum constants. Such annotations are
placed immediately before the enum constant they annotate.

It is a compile-time error if a declaration is annotated with more than one
annotation for a given annotation type.

DiscussioN

Annotations are conventionally placed before all other modifiers, but this is not a require-
ment; they may be freely intermixed with other modifiers.

281

9.7 Annotations INTERFACES

There are three kinds of annotations. The first (normal annotation) is fully
general. The others (marker annotation and single-element annotation) are merely
shorthands.

Annotations:
Annotation
Annotations Annotation

Annotation:
Nor mal Annotation
Marker Annotation
SngleElementAnnotation

A normal annotation is used to annotate a program element:

Normal Annotation:
@ TypeName (ElementVal uePairsypt)

ElementValuePairs:
ElementValuePair
ElementValuePairs, ElementValuePair

ElementValuePair:
Identifier = ElementValue

ElementValue:
Conditional Expression
Annotation
ElementValueArraylnitializer

ElementValueArraylnitializer:

ElementValues:
ElementValue
ElementValues , ElementValue

DiscussioN

Note that the at-sign (@) is a token unto itself. Technically it is possible to put whitespace in
between the at-sign and the TypeName, but this is discouraged.

282

INTERFACES Annotations

TypeName names the annotation type corresponding to the annotation. It isa
compile-time error if TypeName does not name an annotation type. The annota-
tion type named by an annotation must be accessible (86.6) at the point where the
annotation is used, or a compile-time error occurs.

The Identifier in an ElementValuePair must be the simple name of one of the
elements of the annotation type identified by TypeName in the containing annota-
tion. Otherwise, a compile-time error occurs. (In other words, the identifier in an
element-value pair must also be amethod name in the interface identified by Type-
Name.)

The return type of this method defines the element type of the element-value
pair. An ElementValueArraylnitializer is similar to a normal array initializer
(810.6), except that annotations are permitted in place of expressions.

An element type T is commensurate with an element value v if and only if one
of the following conditions is true:

e Tisanarray typeE[] and either:

o V is an ElementValueArraylnitializer and each ElementValuelnitializer
(analogous to avariable initializer in an array initializer) in v is commensu-
rate withe. Or

o Visan ElementValue that is commensurate with T.

» Thetype of v is assignment compatible (85.2) with T and, furthermore:
o If Tisaprimitivetype or String, V isaconstant expression (815.28).
o Visnot null.
o if TisClass, or aninvocation of Class, and vV isaclass literal (815.8.2).
o If Tisan enum type, and v is an enum constant.
It is a compile-time error if the element type is not commensurate with the
ElementValue.

If the element type is not an annotation type or an array type, ElementValue
must be a Conditional Expression (§15.25).

DiscussioN

Note that nu11 is not a legal element value for any element type.

9.7

283

9.7

284

Annotations INTERFACES

If the element typeis an array type and the corresponding ElementValue is not
an ElementValueArraylnitializer, an array value whose sole element is the value
represented by the ElementValue is associated with the element. Otherwise, the
value represented by ElementValue is associated with the element.

DiscussioN

In other words, it is permissible to omit the curly braces when a single-element array is to
be associated with an array-valued annotation type element.

Note that the array’s element type cannot be an array type, that is, nested array types
are not permitted as element types. (While the annotation syntax would permit this, the
annotation type declaration syntax would not.)

An annotation on an annotation type declaration is known as a meta-annota-
tion. An annotation type may be used to annotate its own declaration. More gener-
aly, circularities in the transitive closure of the "annotates' relation are permitted.
For example, it is legal to annotate an annotation type declaration with another
annotation type, and to annotate the latter type's declaration with the former type.
(The pre-defined meta-annotation types contain several such circularities.)

DiscussioN

Here is an example of a normal annotation:
// Normal annotation
@RequestForEnhancement(

id = 2868724,
synopsis = "Provide time-travel functionality",
engineer = "Mr. Peabody",
date = "4/1/2004"
)
pubTlic static void travelThroughTime(Date destination) { ... }

Note that the types of the annotations in the examples in this section are the annota-
tion types defined in the examples in §9.6. Note also that the elements are in the above
annotation are in the same order as in the corresponding annotation type declaration. This
is not required, but unless specific circumstances dictate otherwise, it is a reasonable con-
vention to follow.

INTERFACES Annotations

The second form of annotation, marker annotation, is a shorthand designed
for use with marker annotation types:

Marker Annotation:
@ TypeName

It issimply a shorthand for the normal annotation:
@TypeName ()

DiscussioN

Example:
// Marker annotation
@Preliminary public class TimeTravel { ... }

Note that it is legal to use marker annotations for annotation types with elements, so
long as all the elements have default values.

The third form of annotation, single-element annotation, is a shorthand
designed for use with single-element annotation types:

SngleElementAnnotation:
@ TypeName (ElementValue)

It is shorthand for the normal annotation:

@TypeName (value = ElementValue)

DiscussioN

Example:
// Single-element annotation

@Copyright("2002 Yoyodyne Propulsion Systems, Inc., All rights
reserved.")
public class OscillationOverthruster { ... }

Example with array-valued single-element annotation:

// Array-valued single-element annotation

@Endorsers({"Children", "Unscrupulous dentists"})
public class Lollipop { ... }

9.7

285

9.7

286

Annotations INTERFACES

Example with single-element array-valued single-element annotation (note that the curly
braces are omitted):
// Single-element array-valued single-element annotation
@Endorsers("Epicurus™)
public class Pleasure { ... }
Example with complex annotation:
// Single-element complex annotation
@Author(@Name(first = "Joe", last = "Hacker™))
public class BitTwiddle { ... }
Note that it is legal to use single-element annotations for annotation types with multiple ele-
ments, so long as one element is named value, and all other elements have default values.
Here is an example of an annotation that takes advantage of default values:

// Normal annotation with default values

@RequestForEnhancement(
id = 4561414,
synopsis = "Balance the federal budget"

public static void balanceFederalBudget() {
throw new UnsupportedOperationException("Not implemented");
}

Here is an example of an annotation with a Class element whose value is restricted by the
use of a bounded wildcard.

// Single-element annotation with Class element restricted by
bounded wildcard

// The annotation presumes the existence of this class.

class GorgeousFormatter implements Formatter { ... }
@PrettyPrinter(GorgeousFormatter.class) public class Petunia {...}

// This annotation is illegal, as String is not a subtype of Format-
ter!!
@PrettyPrinter(String.class) public class Begonia { ... }

Here is an example of an annotation using an enum type defined inside the annotation
type:
// Annotation using enum type declared inside the annotation type

@Quality(Quality.Level.GOOD)
pubTic class Karma {

}

CHAPTER 10

Arrays

I N the Java programming language arrays are objects (84.3.1), are dynamically
created, and may be assigned to variables of type Object (84.3.2). All methods of
classObject may beinvoked on an array.

An array object contains a number of variables. The number of variables may
be zero, in which case the array is said to be empty. The variables contained in an
array have no names; instead they are referenced by array access expressions that
use nonnegative integer index values. These variables are called the components
of the array. If an array has n components, we say n is the length of the array; the
components of the array are referenced using integer indices from 0 to n—-1,
inclusive.

All the components of an array have the same type, called the component type
of the array. If the component type of an array is T, then the type of the array itself
iswritten T[].

The value of an array component of type float is aways an element of the
float value set (84.2.3); similarly, the value of an array component of type double
is aways an element of the double value set. It is not permitted for the value of an
array component of type float to be an element of the float-extended-exponent
value set that is not also an element of the float value set, nor for the value of an
array component of type double to be an element of the double-extended-expo-
nent value set that is not also an element of the double value set.

The component type of an array may itself be an array type. The components
of such an array may contain references to subarrays. If, starting from any array
type, one considers its component type, and then (if that is also an array type) the
component type of that type, and so on, eventually one must reach a component
type that is not an array type; thisis called the element type of the origina array,
and the components at thislevel of the data structure are called the elements of the
original array.

287

101

288

Array Types ARRAYS

There are some situations in which an element of an array can be an array: if
the element typeisObject or Cloneable Or java.io.Serializable, then some
or al of the elements may be arrays, because any array object can be assigned to
any variable of these types.

10.1 Array Types

An array type is written as the name of an element type followed by some number
of empty pairs of square brackets []. The number of bracket pairs indicates the
depth of array nesting. An array’s length is not part of its type.

The element type of an array may be any type, whether primitive or reference.
In particular:

» Arrays with an interface type as the component type are alowed. The ele-
ments of such an array may have as their value a null reference or instances of
any type that implements the interface.

» Arrayswith an abstract class type as the component type are allowed. The
elements of such an array may have astheir value anull reference or instances
of any subclass of the abstract classthat isnot itself abstract.

Array types are used in declarations and in cast expressions (815.16).

10.2 Array Variables

A variable of array type holds a reference to an object. Declaring a variable of
array type does not create an array object or alocate any space for array compo-
nents. It creates only the variable itself, which can contain a reference to an array.
However, the initializer part of adeclarator (88.3) may create an array, areference
to which then becomes the initial value of the variable.

Because an array’s length is not part of itstype, asingle variable of array type
may contain references to arrays of different lengths.

Here are examples of declarations of array variables that do not create arrays:

int[] ai; // aray of int
short[][] as; // array of array of short
Object[] ao, // array of Object
otherAo; // aray of Object
Collection<?>[] ca; // array of Collection of unknown type
short s, // scdar short
aas[]1[1; // array of array of short

ARRAYS Array Access

Here are some examples of declarations of array variables that create array
objects:
Exception ae[] = new Exception[3];

Object aao[][] = new Exception[2][3];
int[] factorial = { 1, 1, 2, 6, 24, 120, 720, 5040 };

Chal" ac[] = {] I’ '0', 't', l’ lal,] l,
lsl, ltl, lr,l, l_il, lnl’ lgl };
String[] aas = { "array", "of", "String", };

The [] may appear as part of the type at the beginning of the declaration, or as
part of the declarator for a particular variable, or both, asin this example:

byte[] rowvector, colvector, matrix[];
This declaration is equivaent to:
byte rowvector[], colvector[], matrix[][];

Once an array object is created, its length never changes. To make an array vari-
able refer to an array of different length, a reference to a different array must be
assigned to the variable.

If an array variable v has type A[], where A is a reference type, then v can
hold a reference to an instance of any array type B[], provided B can be assigned
to A. Thismay result in arun-time exception on alater assignment; see 810.10 for
adiscussion.

10.3 Array Creation

An array is created by an array creation expression (815.10) or an array initializer
(810.6).

An array creation expression specifies the element type, the number of levels
of nested arrays, and the length of the array for at |east one of the levels of nesting.
The array’s length is available as afinal instance variable 1ength. It isacompile-
time error if the element type is not areifiable type (84.7)

An array initializer creates an array and providesinitial valuesfor al its com-
ponents.

10.4 Array Access

A component of an array is accessed by an array access expression (§15.13) that
consists of an expression whose value is an array reference followed by an index-

104

289

105

290

Arrays: A Smple Example ARRAYS

ing expression enclosed by [and 1, asin A[i]. All arrays are 0-origin. An array
with length n can be indexed by theintegers0 ton-1.

Arrays must be indexed by int values; short, byte, or char values may aso
be used as index values because they are subjected to unary numeric promotion
(8) and become int values. An attempt to access an array component with a long
index value results in a compile-time error.

All array accesses are checked at run time; an attempt to use an index that is
less than zero or greater than or equal to the length of the array causes an
ArrayIndexOutOfBoundsException to bethrown.

10.5 Arrays. A Simple Example

The example:
class Gauss {

public static void main(String[] args) {
int[] ia = new int[101];
for (int i = 0; i < ia.length; i++)
iali] = 1i;
int sum = 0;
for (int e : ja)
sum += e;
System.out.printin(sum);
}
3

that produces the output:

5050
declaresavariable ia that hastype array of int, that is, int[]. Thevariableia is
initialized to reference a newly created array object, created by an array creation
expression (815.10). The array creation expression specifies that the array should
have 101 components. The length of the array is available using the field Tength,
as shown.

The example program fills the array with the integers from 0 to 100, sums
these integers, and prints the result.

10.6 Array Initializers

An array initializer may be specified in a declaration, or as part of an array cre-
ation expression (815.10), creating an array and providing someinitial values.

ARRAYS Array Initializers

Arraylnitializer:
{ Variablelnitializersyp ,opt }

Variablelnitializers:
Variablel nitializer
Variablelnitializers , Variablelnitializer

Thefollowing is repeated from §8.3 to make the presentation here clearer:

Variablelnitializer:
Expression
Arraylnitializer

An array initializer is written as a comma-separated list of expressions,
enclosed by braces” {" and “}".

The length of the constructed array will equal the number of expressions.

The expressions in an array initializer are executed from left to right in the
textual order they occur in the source code. The nth variable initializer specifies
the value of the n-1st array component. Each expression must be assignment-com-
patible (85.2) with the array’s component type, or a compile-time error results. It
is a compile-time error if the component type of the array being initialized is not
reifiable (84.7).

If the component type isitself an array type, then the expression specifying a
component may itself be an array initializer; that is, array initializers may be
nested.

A trailing comma may appear after the last expression in an array initializer
and isignored.

Asan example:

class Test {

public static void main(String[] args) {
int ia[][] = { {1, 2}, null };
for (int[] ea : ia)
for (int e: ea)
System.out.println(e);

}

prints:
1
2

before causing a Nul1PointerException in trying to index the second compo-
nent of the array ia, which isanull reference.

10.6

291

10.7 Array Members ARRAYS

10.7 Array Members

The members of an array type are all of the following:

* The public final field Tength, which contains the number of components
of the array (1ength may be positive or zero).

* The pub1ic method c1one, which overrides the method of the same namein
class Object and throws no checked exceptions. The return type of the clone
method of an array type T[] iST[] -

 All the membersinherited from class Object; the only method of Object that
is not inherited isits c1one method.

An array thus has the same public fields and methods as the following class:
class A<T> implements Cloneable, java.io.Serializable {
public final int length = Xx;
public T[] clone() {
try {
return (T[])super.clone(); // unchecked warning
} catch (CloneNotSupportedException e) {
throw new InternalError(e.getMessage());
3

}

Note that the cast in the example above would generate an unchecked warning
(85.1.9) if arrays were really implemented this way.

Every array implements the interfaces Cloneable and java.io.Serializ-
able.

That arrays are cloneable is shown by the test program:

class Test {

public static void main(String[] args) {
int iall] {1, 2 };
int ia2[] ial.clone();
System.out.print((ial == ia2) + " ");
jal[l]++;
System.out.println(ia2[1]);

}

which prints:

false 2
showing that the components of the arrays referenced by ial and ia2 are different
variables. (In some early implementations of the Java programming language this

292

ARRAYS Class Objects for Arrays

example failed to compile because the compiler incorrectly believed that the clone
method for an array could throw a CloneNotSupportedException.)
A clone of amultidimensional array is shallow, which isto say that it creates
only asingle new array. Subarrays are shared.
Thisis shown by the example program:
class Test {
public static void main(String[] args) throws Throwable {
int ial]l]l = { {1, 2}, null };
int ja[][] = ia.clone(Q);
System.out.print((ia == ja) + " ");
System.out.printin(ia[0] == ja[0] && ia[l] == ja[ll);

}
which prints:
false true

showing that the int[] array that isia[0] and the int[] array that is ja[0] are
the same array.

10.8 Class Objectsfor Arrays

Every array has an associated Class object, shared with all other arrays with the
same component type. The direct superclass of an array type is Object. Every
array type implements the interfaces Cloneable and java.io.Serializable
Thisis shown by the following example code:
class Test {
public static void main(String[] args) {
int[] ia = new int[3];
System.out.printin(ia.getClass());
System.out.printin(ia.getClass() .getSuperclass());
}
}

which prints:
class [I
class java.lang.Object

where the string “[I” is the run-time type signature for the class object “array
with component type int”.

10.8

293

109

294

An Array of Charactersis Not a String ARRAYS

10.9 An Array of CharactersisNot aString

In the Java programming language, unlike C, an array of char is not a String,
and neither a String nor an array of char is terminated by '\u0000' (the NUL
character).

A String object is immutable, that is, its contents never change, while an
array of char has mutable elements. The method toCharArray in class String
returns an array of characters containing the same character sequence as a
String. The class StringBuffer implements useful methods on mutable arrays
of characters.

10.10 Array Store Exception

If an array variable v hastype A[], where A is areference type, then v can hold a
reference to an instance of any array type B[], provided B can be assigned to A.
Thus, the example:
class Point { int x, y; }

class ColoredPoint extend