

1 of 2

17MAT11

		17	MAT11
6	a.	The position vector of a particle at time t is $\vec{r} = \cos((t-1) i + \sin h (t-1) j + t^3 k$. Find the
			(06 Marks)
	b.		07 Marks)
	c.	Prove that Curl ($\phi \vec{A}$) = ϕ (curl \vec{A}) + grad $\phi \times \vec{A}$.	07 Marks)
		Module-4	
7	a.	Find the reduction formula for $\int_{0}^{\frac{\pi}{2}} \sin^{n} x dx$.	06 Marks)
	b.	Solve $x^3 \frac{dy}{dx} - x^2y = -y^4 \cos x.$	07 Marks)
			07 Morto)
	c.	Show that the family of parabolas $y^2 = 4a(x + a)$ is self orthogonal. (07 Marks)
		OR	
0		$\mathbf{r} = 1 + \mathbf{f}^{\infty} \mathbf{x}^2 + 1$	
8	a.	Evaluate $\int_{0}^{\infty} \frac{x^{2}}{(1+x^{2})^{7/2}} dx.$ (6)	06 Marks)
		$2 y y^2 - 2 y z^2 - 2 y $	
	б. с.	Solve (y' $e^{-y} + 4x$) dx + (2xy $e^{-y} - 3y$) dy = 0. A body in air at 25°C cools from 100°C to 75°C in 1 minute. Find the temperature	07 Marks)
	0.		07 Marks)
•		Module-5	
9	a.	Find the rank of the matrix	
			06 Marks)
		$ \begin{bmatrix} 2 & 1 & 3 & 4 \\ 2 & 3 & 4 & 7 \\ 2 & 3 & 1 & 4 \end{bmatrix} $	
	h		motrix by
	b.	power method :	nautx by
		$A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \end{bmatrix}$ by taking the initial approximation to the eigen vector as [1, 0.8,	-0.8]'.
	4	Perform 3 iterations.	07 Marks)
	c.	Show that the transformation :	
		$y_1 = 2x_1 - 2x_2 - x_3$, $y_2 = -4x_1 + 5x_2 + 3x_3$ and $y_3 = x_1 - x_2 - x_3$ is regular and find	
		inverse transformation.	07 Marks)
		OR	
10	a.		s – Seidel
		method.	06 Marks)
	b.	Diagonalize the matrix $A = \begin{bmatrix} -19 & 7 \\ -42 & 16 \end{bmatrix}$.	07 Marks)
	c.	Reduce the quadratic form $2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_3$ into Canonical form, using o	rthogonal
		transformation. (07 Marks)

		2 of 2	
		Co.	

		CBCS &	CHEME		
USN					17MAT21
		Second Semester B.E. Degree I Engineering M			019
Tim	ne: 1	3 hrs.	0	Max.	Marks: 100
	Ι	Note: Answer any FIVE full questions, ch	oosing one full	auestion from each m	odule.
				1	
1	a.	Solve $y''' - y'' + 4y' - 4y = \sin h(2x + 3)$.	<u>lule-1</u>	16 T	(06 Marks)
	b.	Solve $y'' + 2y' + y = 2x + x^2$.			(07 Marks)
	c.	Solve $(D^2 + 1)y = \tan x$ by method of var	iation of parame	eter.	(07 Marks)
		No.	DR	x	
2		Solve $(D^3 - 1)y = 3\cos 2x$, where $D = -\frac{1}{2}$			(OC Maular)
2	a.	d	x Co		(06 Marks)
	b.	Solve $y'' - 6y' + 9y = 7e^{-2x} - \log 2$.			(07 Marks)
	c.	Solve $y'' - 3y' + 2y = x^2 + e^x$ by the met	hod of un-deterr	nined coefficients.	(07 Marks)
			lule-2		
3		Solve $x^2y'' + xy' + 9y = 3x^2 + \sin(3\log x)$			(06 Marks)
	b.	Solve $y\left(\frac{dy}{dx}\right)^2 + (x-y)\frac{dy}{dx} - x = 0$.		AP .	(07 Marks)
	c.	Solve $(px - y)(py + x) = 2p$ by reducing	it into Cluiraut'	s form by taking $X = x$	x^2 and $Y = y^2$.
		19		1. S	(07 Marks)
			DR		
4	a.	Solve $(3x+2)^2 y'' + 3(3x+2)y' - 36y = 8x^2$	$x^{2} + 4x + 1$		(06 Marks)
	b.	Solve $p^2 + 2py \cot x - y^2 = 0$.			(07 Marks)
	c.	Show that the equation $xp^2 + px - py + 1$ and singular solution.	1 - y = 0 is Claim	aut's equation and fir	
			geo -	、	(07 Marks)
5			lule-3	0	2 2
5	a.	Form the partial differential equation eliminating the arbitrary function.	of the equation	$\lambda x + my + nz = \phi(x^2 + y)$	- y ^z + z ^z) by (06 Marks)
	1.	Solve $\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} = \mathbf{x} + \mathbf{y}$.			. ,
	b.	UX C	2		(07 Marks)
	c.	Derive the one dimensional heat equation	$u_t = c^2 . u_{xx}$		(07 Marks)
			DR		
6	a.	Form the partial differential equation	of the equation	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ by	eliminating
		arbitrary constants.			(06 Marks)
		19	1 of 2		
		G I I I I I I I I I I I I I I I I I I I			

•

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

3

•

17MAT21

		22-	
	b.	Solve $\frac{\partial^2 z}{\partial y^2} = z$, given that $z = 0$ and $\frac{\partial z}{\partial y} = \sin x$ when $y = 0$.	(07 Marks)
	c.	Obtain the solution of one dimensional wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ by the	method of
		separation of variables for the positive constant.	(07 Marks)
		Module-4	
7	a.	Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz.$	(06 Marks)
	b.	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} y^2 dy dx$ by changing the order of integration.	(07 Marks)
	c.	Derive the relation between Beta and Gamma function as $\beta(m,n) = \frac{\overline{ m \cdot n }}{\overline{ m+n }}$	(07 Marks)
		OR	
8	a.	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-y^2}} x^3 \cdot y dx dy$	(06 Marks)
	1	Evaluate $\int_{-a}^{a} \int_{0}^{\sqrt{a^2 - x^2}} \sqrt{x^2 + y^2} dy dx$ by changing into polar coordinates.	
	b.	Evaluate $\int_{-a} \int_{0} \sqrt{x^2 + y^2} dy dx$ by changing into polar coordinates.	(07 Marks)
		Evaluate $\int_{0}^{\infty} \frac{dx}{1+x^4}$ by expressing in terms of beta function.	(07 Marks)
		Module-5	
9	a.	Find (i) L[t cos at] (ii) L $\left[\frac{\sin at}{t}\right]$.	(06 Marks)
	b.	Find the Laplace transform of the full wave rectifier $f(t) = E \sin wt$, $0 < t$	$t < \frac{\pi}{2}$ with
			W
		period $\frac{\pi}{w}$.	(07 Marks)
	c.	Solve $y'' + k^2 y = 0$ given that $y(0) = 2$, $y'(0) = 0$ using Laplace transform.	(07 Marks)
		OR	
10	a.	Find Inverse Laplace transform of $\frac{s+2}{s^2(s+3)}$.	(06 Marks)
	b.	Express the function	
		$f(t) = \begin{cases} \cos t, & 0 < t < \pi \\ \sin t, & t > \pi \end{cases}$	
		in terms of unit step function and hence find its Laplace transform.	(07 Marks)
	c.	Find Inverse Laplace transform of $\frac{1}{s(s^2 + a^2)}$ using convolution theorem.	(07 Marks)
		$s(s^2 + a^2)$	

		2 of 2	

17PHY12/22

First/Second Semester B.E. Degree Examination, Dec.2018/Jan.2019 **Engineering Physics**

GBCSSSGTEME

Time: 3 hrs.

USN

1

3

4

Max. Marks: 100

(06 Marks)

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. Physical constants; Velocity of light, $c = 3 \times 10^8$ m/s mass of the electron, $m = 9.1 \times 10^{-31}$ kg Planck's constant, $h = 6.625 \times 10^{-34}$ JS charge of electron, $e = 1.6 \times 10^{-19} C$ Boltzmann's constant $K = 1.382 \times 10^{-23} J/K$ Avagadro's number, $N_A = 6.02 \times 10^{26} / K$ mole.

Module-1

Define group velocity and phase velocity and hence obtain the relation between them. a.

- Mention any four important characteristics of matter waves. (04 Marks) b.
- Assuming time independent Schrodinger wave equation, obtain an expressions for energy C. eigen value and eigen function for an electron in one dimensional potential well of infinite wall height. (07 Marks)
- The velocity of uncertainty electron was observed to be 5×10^3 m/s. Using Heisenberg d. uncertainty principle. Calculate the uncertainty of an electron in its position. (03 Marks)

OR

2	a.	Mention assumption of Planck's law. Obtain Wien's law and Rayleigh-Jean's	law from
		Planck's law for shorter and longer wavelength limits.	(07 Marks)
	b.	Set up time independent one dimensional Schrodinger wave equation.	(07 Marks)
	c.	Briefly explain probability density of wave function.	(03 Marks)
	d.	An electron has K.E. 120 eV. Find its de Broglie wavelength.	(03 Marks)

Module-2

a. Discuss the merits of quantum free electron theory. (06 Marks) b. Derive an expression for electrical conductivity of an intrinsic semiconductor. (05 Marks) What is Meissner effect? Explain Type-I and Type-II superconductors. (05 Marks) C. . d. Find the temperature at which there is 1%. Probability that a state with energy 0.5 eV above Fermi energy is occupied. (04 Marks)

OR

- Derive an expression for electrical conductivity based on quantum free electron theory. a.
 - (06 Marks) b. Define mobility factor, drift velocity, mean collision time and relaxation time. (04 Marks)
 - c. What is superconductivity? Explain BCS theory of superconductivity.
 - (06 Marks) d. For intrinsic gallium arsenide at room temperature, the electrical conductivity is 10 ohm⁻¹m⁻¹. The electron and hole mobilities are 8.85 m²/vs and 0.04 m²/vs respectively. Calculate the intrinsic carrier concentration. (04 Marks)

17PHY12/22

Module-3

- a. Obtain an expression for energy density of radiation under thermal equilibrium condition in terms of Einstein's coefficients. (07 Marks)
- b. Explain the recording and reconstruction technique of holography. (05 Marks)

5

7

- c. Discuss point to point optical fiber communication system with neat block diagram. (05 Marks)
- d. Calculate V-number for an optical fiber of core diameter 45×10^{-6} m and with refractive indices 1.45 and 1.40 respectively for core and cladding when the wavelength of the propagation wave is 700×10^{-9} m. (03 Marks)

OR

- 6 a. Describe the construction and working of CO₂ laser with suitable diagrams and mention some important applications. (08 Marks)
 - b. Explain the condition for lasing action. (04 Marks)
 - c. Derive an expression for numerical aperture of an optical fiber and hence show the condition for propagation. The refractive indices of core and cladding are 1.50 and 1.48 respectively. Calculate the numerical aperture of an optical fiber. (08 Marks)

Module-4

- a. Define atomic packing factor, calculate the atomic packing factor for SC, BCC and FCC structure. (08 Marks)
 - b. Explain in brief the seven crystal system with neat diagrams. (07 Marks)
 - c. What are Miller indices? Explain the procedure of finding Miller indices. (05 Marks)

OR

8	a.	Describe the construction and working of Bragg's spectrometer and hence how it is used to
		determine crystal structure. (08 Marks)
	b.	Derive an expression for inter planar spacing in terms of Miller indices. (06 Marks)
		Explain the crystal structure of diamond with neat sketch (06 Marks)

Module-5

9	a.	Explain the construction and working of Reddy shock tube and explain any three	e important
÷ Î		applications.	(08 Marks)
		Describe the principle, construction and working of SEM with neat diagram.	(08 Marks)
	c.	Explain the types of Carbon nano tubes with diagrams.	(04 Marks)

OR

10	a.	Explain Rankine-Hugoniot equations for a normal shock wave.	(06 Marks)
	b.	Describe the top down approach of preparation of nanomaterials by ball milling i	method.
			(05 Marks)
•.		Describe Arc discharge method of obtaining CNTs with neat diagram. Define Mach number, subsonic wave, ultrasonic wave and supersonic wave.	(05 Marks) (04 Marks)

* * * * *

		CBCS SCHEME	
USN		· 17C1	HE12/22
	Fir	rst/Second Semester B.E. Degree Examination, Dec.2018/Jan.2 Engineering Chemistry	2019
Tin	ne: 3	3 hrs. Max. Ma	arks: 100
	N	ote: Answer any FIVE full questions, choosing ONE full question from each mod	lule.
		Module-1	
1	a.	What are ion selective electrodes? Discuss the construction and working of a glass	electrode. (07 Marks)
	b.	Define Battery. Explain construction, working and uses of (Ni – Metal Hydride) ba	attery. (07 Marks)
	c.	What are fuel cells? How it is different from a galvanic cell? Mention any two adv fuel cell.	
		OR	
2	a. b.	Derive Nernst equation for electrode potential. What are concentration cells? The emf of the cell	(06 Marks)
		Ag AgNO ₃ $(0.0083M)$ AgNO ₃ (XM) Ag was found to be 0.074 V at 298 K. Calculate the value of X and write the cell react	(07 Marks)
	c.	Describe the construction, working and applications of methanol -oxygen fuel cell	l. (07 Marks)
3	a.	<u>Module-2</u> Define corrosion. Explain electrochemical theory of corrosion by taking Iron as an	n example.
	b.	What is Cathodic protection? Explain Sacrificial Anode and Impressed Current	(07 Marks) method for
	2	prevention of corrosion. Define electroless plating. What are the differences between electroplating and	(07 Marks)
	c.	plating?	(06 Marks)
		OR	
4	°a.	How does the following factors affect the rate of corrosion?	
	And	(i) Nature of the corrosion product(ii) Temperature	
	b.	(iii) pH. Explain the process of electroplating of chromium and its applications.	(06 Marks) (07 Marks)
	с.	Discuss the process of electroless plating of copper and explain its applicat manufacture of Printed Circuit Board (PCB).	
		Module-3	
5	a.	Define Gross and Net calorific values of a solid on a liquid fuel. Calculate the gro calorific value of a sample of coal 0.5 g of which when burnt in a bomb calorim the temperature of water from 293 K to 296.4 K. The mass of water is 1000 g equivalent of calorimeter is 350 g. The specific heat of H ₂ O is 4.187 kJ/kg/K, lat steam is 2454 kJ/kg. The coal sample contains 93% carbon, 5% hydrogen and 2%	neter raised ; and water tent heat of
		1 of 2	,

.

.44

(06 Marks)

(06 Marks)

(07 Marks)

- b. What is meant by knocking? What are its ill effects? Discuss the mechanism of knocking by giving relevant equations. (07 Marks)
- c. Explain the construction and working of a PV cell.

OR

- a. What is cracking of petroleum? Describe the fluidized bed catalytic cracking. (07 Marks)
 b. Explain the production of solar grade silicone by Union Carbide process. (07 Marks)
 c. Write a note on :
 - (i) Power alcohol (ii) Biodiesel.

6

Module-4

- 7 a. What is addition polymerization? Illustrate the mechanism of addition polymerization by taking Vinyl Chloride as an example. (07 Marks)
 - b. Describe the manufacture of (i) PMMA (ii) Epoxy resin. Mention the uses. (07 Marks)
 - c. A polymer sample containing 100, 250 and 300 molecules having molar mass 10³ g/mol, 10⁴ g/mol and 10⁵ g/mol respectively. Calculate the number average and weight average molecular mass of polymer. (06 Marks)

OR

- 8 a. What is glass transition temperature? Explain any three factors affecting T_g. (07 Marks)
 b. What are elastomers? Give the synthesis and applications of
 - (i) Silicone rubber (ii) Polycarbonate.
 - c. What are conducting polymers? Discuss the conduction mechanism in polyaniline. (06 Marks)

Module-5

9	a.	Define Priming and Foaming. Mention the reasons for priming and foaming i	n the boiler
		with any two prevention steps.	(07 Marks)
	b.	What is desalination? Explain the desalination of water by reverse osmosis.	(06 Marks)
	с.	Describe the synthesis of nano-materials by Sol-gel process.	(07 Marks)

OR

a. Define COD. In COD test 25.5 cm³ and 12.5 cm³ of 0.05N FAS solution and required for blank and sample titration respectively. The volume of the test sample used is 25 cm³. Calculate the COD of the sample solution. (07 Marks)

b. Explain the precipitation method for preparation of nanomaterials with an example.

Write a note on Fullerenes and Composites. (07 Marks) (06 Marks)

	CBCS SCHEME	
USN		17PCD13/2
	First/Second Semester B.E. Degree Examination, Dec.20 Programming in C and Data Structu	
Tim	e: 3 hrs.	Max. Marks: 100
	Note: Answer any FIVE full questions, choosing ONE full question from each module.	•
	Module-1	
	a. What is an algorithm? Write an algorithm to find largest of 3 numbers.b. Explain any five operators used in C language.c. Explain two types of type conversions.	(08 Mark (10 Mark (02 Mark
		(02 Mark
	OR	
	a. Explain the structure of 'C' program with an example program.b. Explain scanf() & printf() function in C language with syntax and example program.	
		(10 Mark
3	a. Explain if, if-else, nested if-else and cascaded if-else with examples and	d syntax. (10 Marks
	b. Write a C program to simulate simple calculator that performs arithm switch statement. An error message should be displayed, if any attempt	etic operations usin is made to divide b
	zero.	(10 Marks
	OR	
4	a. List the differences between while loop and do-while loop. Write a C sum of natural numbers from 1 to N using for loop.	program to find th (10 Marks
	b. Write a C program to read a year as an input and find whether it is a	
	c. Write a C program to find reverse of a number and check whether it is not.	
		. (00 mark)
	Module-3	
5	a. What is an array? Explain the declaration and initialization of one of dimensional array with an example.	limensional and two (10 Marks)
1	b. Explain any three string manipulation library function with example.	(06 Marks
(c. Write a C program to implement string copy operation STRCOPY(Str string Str1 to another string Str2 without using library function.	

OR

What is function? Explain the two categories of argument passing techniques, with example. a. (10 Marks) b. Write a C function isprime(num) that accepts an integer argument and return 1 if the argument is a prime or a 0 otherwise. Write a program that invokes this function to generate

prime number between the given range.

(10 Marks)

1 of 2

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

17PCD13/23

Module-4

- a. What is structure data type? Explain.
- b. Show how a structure variable is passed as a parameter to a function, with an example.
- c. Explain the concept of array of structures, with a suitable C program.

OR

- 8 a. What is FILE? Explain fopen(), fclose() functions.
 - b. Explain various modes of FILE.
 - c. Given two files "Studentname.txt" and "USN.txt" that contains students name and USN respectively. Write a C-program to create a new file called "output-txt" and copy the contents of files "Studentname.txt" and "USN.txt" into output file in the sequence shown below :

Student name	USN
Name – 1	USN - 1
Name -2	USN - 2
<u> </u>	. —
-	
-	
-	- 19

(10 Marks)

Module-5

- a. Define a pointer. Explain how pointer variable is declared and initialized. (05 Marks)
 b. What are primitive and non primitive data types? Give examples. (05 Marks)
 - c. Write a program using pointers to compute sum, mean and standard deviation of all elements stored in an array of "n" real numbers. (10 Marks)

OR

10	a.	Explain any 2 pre- processor directives in 'C' language.	(05 Marks)
	b.	What is a STACK? Explain its applications.	(05 Marks)
	c.	What is a QUEUE? Explain with example.	(05 Marks)
	d.	Write a program to swap 2 numbers using call-by-reference method.	(05 Marks)

7

9

(06 Marks)

(04 Marks)

(10 Marks)

(05 Marks)

(05 Marks)

					GDG	9 9011EM	IS 🔊	y	
USN							OX	1	7ELN15/25
I	First/Se	cond	Sem	ester		egree Examir		ec.2018/Ja	an.2019
					Basi	c Electron	ics	Ca	
Time	a 3 hrs					N.V.		Max	Marks: 100

ADAQ QAUIEMIE

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Explain the operation of PN junction diode under forward and reverse bias condition. (07 Marks)
 - b. Discuss the load and line regulations using zener diode with neat circuit diagrams and appropriate expressions. (08 Marks)
 - c. Design a 9V DC reference source consisting of a zener diode and series connected resistor to operate from a 24V supply. $[I_{ZT} = I_Z = 20 \text{ mA}]$. (05 Marks)

ØR

- a. With a neat circuit diagram, explain the operation of centre tapped full wave rectifier. Draw input and output waveforms. (07 Marks)
 - Draw common emitter circuit, sketch input and output characteristics and explain three b. regions of operation. (08 Marks)
 - c. Derive the relationship between α and β . Find I_c and I_E for the transistor with $\alpha = 0.99$ and $I_{\rm B} = 20 \mu A$. (05 Marks)

Module-2

Precisely analyse the circuit of voltage divider bias. 3 a.

(08 Marks)

What is Op-Amp? List out the ideal and particle characteristics of Op-Amp. (07 Marks) b. c. Calculate the output voltage of a summer. Given : $R_1 = 200k\Omega$, $R_2 = 250k\Omega$, $R_3 = 500k\Omega$. $R_f = 1M\Omega$, $V_1 = -2V$, $V_2 = -1V$ and $V_3 = +3V$. (05 Marks)

OR

- Design a base bias circuit to have $V_{CE} = 5V I_C = 5mA$. The supply voltage is 15V and 4 a. transistor has $h_{fe} = 100$. (07 Marks)
 - Derive an expression for the voltage gain of inverting and Non-inverting amplifier. b. (08 Marks)
 - Analyse the circuit of an op-amp as an integrator. C.

Module-3

- Interpret the following : 5 a.
 - i) $(48350)_{10} = ()_{16} = ()_{8}$
 - ii) $(FACE)_{16} = (\)_2 = (\)_8$
 - iii) $(847.951)_{10} = ($

(06 Marks)

(05 Marks)

- Write the logical symbol, truth table and Boolean expressions of all the logic gates : b. (AND, OR, NOT, NOR, NAND, EX-OR, EX-NOR). (09 Marks) (05 Marks)
- Realize EX -OR gate using NAND gates only. c.

)8.

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

1

OR

	Which are the universal gates? Realize basic gates using u	
b.	Design a full adder using two half adder. Derive the necess	sary expressions.
c.	Perform the subtraction using 2's complement method :	19
	i) $(11010)_2 - (10000)_2$	A second

ii) $(11)_{10} - (15)_{10}$.

6

9

(05 Marks)

(07 Marks)

(08 Marks)

Module-4

7	a.	With diagram and truth table explain NAND gate latch.	(06 Marks)
	b.	Explain the operation of 8051 microcontroller with neat block diagram. Mention	the salient
		features.	(10 Marks)
	c.	Distinguish between flip-flop and latch. List out the applications of flip-flop.	(04 Marks)
		OR	
8	a.	Explain the operation of clocked RS flip-flop.	(07 Marks)

b. With a neat block diagram, explain microcontroller based stepper motor control system.

			,6		(07 Marks)
c.	With a diagram a	and truth table.	explain NOR	Gate Latch.	(06 Marks)

Module-5

a.	What is modulation? Explain the need for modulation.	(04 Marks)
b.	Derive the expression for frequency modulation with a neat waveforms.	(10 Marks)
c.	Explain the piezoelectric and photo electric transducers.	(06 Marks)

~ 0	R	
	11	

- a. Discuss the comparison between AM and FM modulation. (06 Marks) 10
 - b. Explain the construction and principle of operation of LVDT. (07 Marks)
- A carrier of 1MHz, with 400 Watt of its power is amplitude modulated with a sinusoidal c. signal of 2500 Hz. The depth of modulation 75%. Calculate the side band frequencies, the int. Julie J band width, the power in the side bands and the total power in the modulated wave.

(07 Marks)

	ADAQ QAUEME	
		7EME14/24
4	USN	an.2019
	First/Second Semester B.E. Degree Examination, Dec.2018/Ja Elements of Mechanical Engineering	
	Elements of meening Max	. Marks: 100
	Time: 3 hrs. Note: Answer any FIVE full questions, choosing ONE full question from each module.	
	http://www.internationality.com	
	Module-1	(06 Marks)
	 a. Explain petroleum based gaseous fuels. b. Explain the principle and working of a wind will with neat sketch. 	(08 Marks)
	b. Explain the principle and working of a wind wind wind wind wind wind wind wind	(06 Marks)
	 b. Explain the principle and working of a memory of a mem	
	OR Se to the second willow	ox boiler.
	OR OR 2 a. Explain with neat sketch the construction and working of Babcock and Wilco	(10 Marks) (06 Marks)
	b. List the differences between fire tube and water tube boilers.	(04 Marks)
	b. List the differences between fire tube and water tube contain b. List the differences between fire tube and water tube contain c. Explain any 4 devices which are necessary for safe operation of boilers.	
	il scor bound	
		(08 Marks)
	 a. Explain with neat sketch Parson turbine and its pressure velocity diagram. b. List the differences between open cycle and closed cycle gas turbine. b. List the differences between open cycle and closed cycle gas turbine. 	(06 Marks)
•	 b. List the differences between open cycle and closed cycle gas the between open cycle and closed cycle and c	. (06 Marks)
	C. Explain the constructions and where of a construction of the co	
	OR OR	(06 Marks)
	4 a. Bring out the comparisons between 2-stroke and 4-storke IC engine. b. Explain with neat sketch a 4 stroke engine where combustion of fuel takes	place at constant
	 4 a. Bring out the comparisons between 2-stroke and 4-storke IC engine. b. Explain with neat sketch a 4 stroke engine where combustion of fuel takes pressure. c. A gas engine working on a 4 stroke cycle has a cylinder diameter of 0.25m and running at 180RPM. Its mechanical efficiency is 80% and when man is 6 bar. Find the indicated power, break power and frictional power. consumption rate (kg/hr) and break specific fuel consumption (kg/kw content of the fuel is 42,000 kJ/kg and brake thermal efficiency is 25%. 	(07 Marks) and length 0.45m
	 c. A gas engine working on a 4 stroke cycle has a cylinder diameter of 0.25m and running at 180RPM. Its mechanical efficiency is 80% and when man and running at 180RPM. Its mechanical efficiency and frictional power. 	effective pressure
	and running at 180RPM. Its mechanical efficiency is 80% and which man is 6 bar. Find the indicated power, break power and frictional power is 6 bar. (1, //) and break specific fuel consumption (kg/kw	What is its rule
	is 6 bar. Find the indicated power, break power and frictional power, consumption rate (kg/hr) and break specific fuel consumption (kg/kw content of the fuel is 42,000 kJ/kg and brake thermal efficiency is 25%.	(07 Marks)
	content of the fuel is 42,000 kJ/kg and black distance in the fuel is	
	Hodule-3	
		(06 Marks)
	 5 a. Explain knurling operations with a neat sketch. 5 b. Explain with neat sketches counter sinking and counter boring operations. b. Explain with neat sketches and explain a milling operation using several sev	(08 Marks)
	 b. Explain with neat sketches counter sinking and counter boring operations. b. Explain with neat sketches counter sinking and counter boring operations. c. List the various milling operations and explain a milling operation using s 	ide and face cutter. (06 Marks)
	1 of 2	
	And and a second se	

17EME14/24

OR

- Classify robots based on physical configuration and explain a robot which has a work 6 a. (08 Marks) envelop of hemisphere with neat sketch.
 - b. Explain the necessity of automation and important features of flexible automation. (06 Marks)
 - c. List any 2 advantages, limitations and applications of NC/CMC machines. (06 Marks)

Module-4

- Explain composite materials and its need in today's word. (06 Marks) a. (06 Marks)
 - Classify Ferrous metals with suitable example. b.

7

Define non-ferrous metals and explain any two non-ferrous metals and two alloys. (08 Marks) c.

OR

	List out the comparison between soldering and barzing.	(06 Marks)
b.	Explain with neat sketch the electrodes used in arc welding and its functions.	(06 Marks)
	Explain oxy-acitylene welding process with neat sketch.	(08 Marks)

Module-5

Define refrigerant and explain commonly used refrigerant (any 3). (06 Marks) 9 a. Explain with neat sketch the principles and working of a vapour compression refrigerator. b. (08 Marks) Define the following : i) ton of refrigeration ii) coefficient of performance iii) relative COP. c. (06 Marks)

OR

10	a.	Explain with a neat sketch, working of room air conditioner.	(08 Marks)
	b.	Explain with neat sketch the working of vapor absorbtion refrigerator.	(08 Marks)
	С	List out the properties of a good refrigerant.	(04 Marks)

An OF COL

17CIV13/23

(06 Marks)

(06 Marks)

Module-2

- 3 State and prove law of parallelogram of forces. a.
 - b. Explain with neat diagram,
 - i) Coefficient of friction
 - ii) Angle of repose
 - iii) Cone of friction.
 - The four coplanar concurrent forces acting at a point are as shown in Fig.Q.3(c). One of the c. force is unknown and its magnitude is as shown by 'F'. The resultant of these forces is 5kN and is acting along x-axis. Determine the force F and its inclination ' θ ' with x-axis.

(08 Marks)

- 4 State and prove Lami's theorem. a.
 - b. Compute the tensions in the strings AB, BC and CD as shown in Fig.Q.4(b).

(04 Marks) (08 Marks)

Two blocks A and B weighing 2kN and 1.5kN are connected by a wire passing over a С. smooth frictionless pulley as shown in Fig.Q.4(c). Determine the magnitude of force 'P' required to impound motion. Take $\mu = 0.20$. (08 Marks)

- 5 State and explain Varignon's theorem. a.
 - What are the types of loads and supports a beam may have? Explain briefly with neat b. sketches. (06 Marks)
 - Determine the position, magnitude and direction of resultant of the forces acting on a body C. as shown in Fig.Q.5(c) with respect to point A. (08 Marks)

(06 Marks)

17CIV13/23

(06 Marks)

- 6 a. Define Equillibriant. Explain the conditions of equilibrium of coplanar concurrent force system and coplanar non concurrent force system. (06 Marks)
 - b. Find the reactions for a cantilever beam as shown in Fig.Q.6(b)

c. Determine the support reactions for the overhanging beam as shown in Fig.Q.6(c). (08 Marks)

Module-4

- 7 a. Determine the centroid of a semicircular lamina of radius 'R' by the method of integration. (08 Marks)
 - b. Find the polar moment of inertia of the section as shown in Fig.Q.7(b), about an axis passing through its centroid and find polar radius of gyration. (12 Marks)

8 a. State and prove parallel axis theorem. (06 Marks)
 b. With reference to the coordinate axes x and y, locate the centroid of the area shown in Fig.Q.8(b). (14 Marks)

17CIV13/23

(06 Marks)

Module-5

- a. Define the following: i) Kinematics ii) Kinetics iii) Motion iv) Path. (06 Marks)
- b. What is centrifugal force and super elevation?
- c. A Burglar's car starts at an acceleration of 2m/sec². A police vigilant party came after 5 seconds and continued to chase the Burglar's car with a uniform velocity of 20m/sec. Find the time taken in which the police van will overtake the car.
 (08 Marks)

OR

- 10 a. Define the following: i) Uniform velocity ii) Reactilinear motion iii) Curvilinear motion iv) Projectile. (04 Marks)
 - b. Determine the position at which the ball is thrown up the plane will strike the incline plane as shown in Fig.Q.10(b). The initial velocity is 30m/sec and angle of projection is $\tan^{-1}\left(\frac{4}{3}\right)$

with horizontal.

9

(08 Marks)

c. A stone is dropped into a well and a sound of splash is heard after 4 seconds. Find the depth of well if the velocity of sound is 350 m/sec. (08 Marks)