Fourth Semester B.E. Degree Examination, June/July 2016 **Engineering Mathematics - IV**

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting atleast TWO questions from each part. 2. Use of statistical tables permitted.

- a. Using Taylor's series method, solve $y' = x + y^2$, y(0) = 1 at x = 0.1, 0.2, considering upto 4^{th}
 - Using modified Euler's method, find an approximate value of y when x = 0.2 given that $\frac{dy}{dx} = x + y$ and y = 1 when x = 0. Take h = 0.1. Perform two iterations in each stage.

- c. Using Adams-Bashforth method, obtain the solution of $\frac{dy}{dx} = x y^2$ at x = 0.8 given that y(0) = 0, y(0.2) = 0.0200, y(0.4) = 0.0795, y(0.6) = 0.1762. Apply the corrector formula twice.
- a. Employing the Picard's method, obtain the second order approximate solution of the following problem at x = 0.2, $\frac{dy}{dx} = x + yz$, $\frac{dz}{dx} = y + zx$, y(0) = 1, z(0) = -1.
 - b. Solve $\frac{dy}{dx} = 1 + xz$ and $\frac{dz}{dx} = -xy$ for x = 0.3 by applying Runge Kutta method given
 - y(0) = 0 and z(0) = 1. Take h = 0.3. (07 Marks) c. Using the Milne's method, obtain an approximate solution at the point x = 0.4 of the problem $\frac{d^2y}{dx^2} + 3x\frac{dy}{dx} - 6y = 0$ given that y(0) = 1, y(0.1) = 1.03995, y(0.2) = 1.138036, y(0.3) = 1.29865, y'(0) = 0.1, y'(0.1) = 0.6955, y'(0.2) = 1.258, y'(0.3) = 1.873. (07 Marks)
- a. Define an analytic function and obtain Cauchy-Riemann equations in polar form. (06 Marks) Show that $u = e^{2x}$ (x cos2y - y sin2y) is a harmonic function and determine the corresponding analytic function. (07 Marks)
 - c. If f(z) is a regular function of z, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left|f(z)\right|^2 = 4 \left|f'(z)\right|^2$. (07 Marks)
- Evaluate using Cauchy's integral formula $\int \frac{\cos \pi z}{z^2 1} dz$ around a rectangle with vertices $2 \pm i$, $-2 \pm i$.
 - b. Find the bilinear transformation which maps 1, i, -1 to 2, i, -2 respectively. Also find the fixed points of the transformation. (07 Marks)
 - c. Discuss the conformal transformation of $w = z^2$. (07 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be treated as malpractice.

PART-B

5 a. Reduce the differential equation:

 $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (k^2x^2 - n^2)y = 0$ into Bessel form and write the complete solution in terms

of $\tau_n(x)$ and $\tau_{-n}(x)$.

(06 Marks)

b. Express $f(x) = x^3 + 2x^2 - x - 3$ in terms of Legendre polynomials.

(07 Marks)

c. If α and β are the roots of $\tau_n(x) = 0$ then prove that

$$\int\limits_{0}^{1} x \tau_{n}(\alpha x) \tau_{n}(\beta x) dx = \begin{cases} 0, & \alpha \neq \beta \\ \frac{1}{2} [\tau_{n+1}(\alpha)]^{2}, & \alpha = \beta \end{cases}.$$

(07 Marks)

- 6 a. The probability that sushil will solve a problem is 1/4 and the probability that Ram will solve it is 2/3. If sushil and Ram work independently, what is the probability that the problem will be solved by (i) both of them; (ii) at least one of them? (06 Marks)
 - b. A committee consists of 9 students two of which are from first year, three from second year and four from third year. Three students are to be removed at random. What is the chance that (i) the three students belong to different classes; (ii) two belong to the same class and third to the different class; (iii) the three belong to the same class? (07 Marks)
 - c. The contents of three urns are: 1 white, 2 red, 3 green balls, 2 white, 1 red, 1 green balls and 4 white, 5 red, 3 green balls. Two balls are drawn from an urn chosen at random. These are found to be one white and one green. Find the probability that the balls so drawn came from the third urn.
 (07 Marks)
- 7 a. The probability mass function of a variate X is

X <	0	1	2	3	4	5	6
p(x)	k	3k	5k	7k	9k	11k	13k

- i) Find k
- ii) Find p(x < 4), $p(x \ge 5)$, $p(3 < x \le 6)$, p(x > 1)
- iii) Find the mean.

(06 Marks)

b. Derive the mean and variance of Poisson distribution.

(07 Marks)

- c. The mean height of 500 students is 151cm and the standard deviation is 15cm. Assuming that the heights are normally distributed, find how many students heights i) lie between 120 and 155cm. ii) more than 155cm. [Given A(2.07) = 0.4808 and A(0.27) = 0.1064, where A(z) is the area under the standard normal curve from 0 to z > 0]. (07 Marks)
- 8 a. The means of simple samples of sizes 1000 and 2000 are 67.5 and 68.0cm respectively. Can the samples be regarded as drawn from the same population of S.D 2.5cm [Given $z_{0.05} = 1.96$]. (06 Marks)
 - A random sample of 10 boys had the following I.Q: 70, 120, 110, 101, 88, 83, 95, 98, 107, 100. Do these data support the assumption of a population mean I.Q of 100? [Given $t_{0.05}$ for 9d.f = 2.26].
 - c. The following table gives the number of aircraft accidents that occurred during the various days of the week. Find whether the accidents are uniformly distributed over the week.

Days :	Sun	Mon	Tue	Wed	Thur	Fri	Sat	Total
No. of accidents:	14	16	8	12	11	9	14	84

[Given $\psi_{0.05}^2$ 6d.f = 12.59]

(07 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

Fourth Semester B.E. Degree Examination, June/July 2016 Advanced Mathematics – II

Time: 3 hrs. Note: Answer any FIVE full questions. Max. Marks: 100

a. Find the angle between any two diagonals of a cube.

(07 Marks)

- b. Prove that the general equation of first degree in x, y, z represents a plane.
- (07 Marks)

(06 Marks)

c. Find the angle between the lines,

Find the angle between the lines,
$$\frac{x-1}{1} = \frac{y-5}{0} = \frac{z+1}{5}$$
 and $\frac{x+3}{3} = \frac{y}{5} = \frac{z-5}{2}$.

2 a. Prove that the lines,

Prove that the lines,
$$\frac{x-5}{3} = \frac{y-1}{1} = \frac{z-5}{-2} \text{ and } \frac{x+3}{1} = \frac{y-5}{3} = \frac{z}{5} \text{ are perpendicular.}$$
 (07 Marks)

b. Find the shortest distance between the lines.
$$\frac{x-8}{3} = \frac{y+9}{-16} = \frac{z-10}{7} \text{ and } \frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}.$$
 (07 Marks)

- c. Find the equation of the plane containing the point (2, 1, 1) and the line, $\frac{x+1}{2} = \frac{y-2}{3} = \frac{z+1}{-1}$ (06 Marks)
- 3 a. Find the constant 'a' so that the vectors $2\hat{\mathbf{i}} \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} 3\hat{\mathbf{k}}$ and $3\hat{\mathbf{i}} + a\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$ are co-planar.
 - b. If $\vec{a} = 2\hat{i} + 3\hat{j} 4\hat{k}$ and $\vec{b} = 8\hat{i} 4\hat{j} + \hat{k}$ then prove that \vec{a} is perpendicular to \vec{b} and also find
 - c. Find the volume of the parallelopiped whose co-terminal edges are represented by the

vectors,
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\vec{b} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{c} = \hat{i} - \hat{j} - \hat{k}$ (06 Marks)

- a. Find the velocity and acceleration of a particle moves along the curve (07 Marks) $\hat{\mathbf{r}} = e^{-2t}\hat{\mathbf{i}} + 2\cos 5t\hat{\mathbf{j}} + 5\sin 2t\hat{\mathbf{k}} \text{ at any time 't'}.$
 - Find the directional derivative of x^2yz^3 at (1, 1, 1) in the direction of $\hat{i} + \hat{j} + 2\hat{k}$. (07 Marks)
 - c. Find the divergence of the vector $\vec{F} = (xyz + y^2z)\hat{i} + (3x^2 + y^2z)\hat{j} + (xz^2 y^2z)\hat{k}$ (06 Marks)

5 a.
$$\vec{F} = (x+y+1)\hat{i} + \hat{j} - (x+y)\hat{k}$$
, show that $\vec{F} \cdot \text{curl } \vec{F} = 0$. (07 Marks)

- b. Show that the vector field, $\vec{F} = (3x + 3y + 4z)\hat{i} + (x 2y + 3z)\hat{j} + (3x + 2y z)\hat{k}$ is solenoidal.
- c. Find the constants a, b, c such that the vector field, $\vec{F} = (x + y + az)\hat{i} + (x + cy + 2z)\hat{j} + (bx + 2y - z)\hat{k}$ is irrotational. (06 Marks)

MATDIP401

- 6 a. Prove that $L(\sin at) = \frac{a}{s^2 + a^2}$. (07 Marks)
 - b. Find L[sin t sin 2t sin 3t]. (07 Marks)
 - c. Find L[cos³t]. (06 Marks)
- 7 a. Find the inverse Laplace transform of $\frac{1}{(s+1)(s+2)(s+3)}$. (07 Marks)
 - b. Find $L^{-1} \left[log \left(1 + \frac{a^2}{s^2} \right) \right]$. (07 Marks)
 - c. Find $L^{-1} \left[\frac{s+2}{s^2 4s + 13} \right]$. (06 Marks)
- 8 a. Solve the differential equation, $y'' + 2y' + y = 6te^{-t}$ under the conditions y(0) = 0 = y'(0) by Laplace transform techniques.
 - b. Solve the differential equation, y'' 3y' + 2y = 0 y(0) = 0, y'(0) = 1 by Laplace transform techniques. (10 Marks)

Highly confidential docute

			Fourth Semester B.E. Degree Examination, June/July 201	6
			Mechanical Measurements and Metrology	
	Ti	me:	3 hrs.	Marks: 100
00.1			Note: Answer FIVE full questions, selecting at least TWO questions from each part.	141 K.S. 100
almac	aıpıaı.		PART - A	
d as m	The Cap In	b.	List the objectives of metrology. Explain the wringing phenomena of slip gauges with neat figure.	(05 Marks) (05 Marks)
completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.		C.	List the slips to be wrung together to produce an overall dimension of 92.357 mm protection slips of 2.500 mm size.	n using two (10 Marks)
lank pa	2	a.	What are the various types of fits used for the purpose of assembly of mac	hine parts?
ining b		b.	Explain each with neat figure. With neat figure, explain: i) Plug gauges, ii) Ring gauges, iii) Snap gauges.	(10 Marks) (10 Marks)
remai	à 3	a.	How the comparators are classified?	(05 Marks)
ifter		b.	Describe with a neat sketch construction and working of LVDT.	(10 Marks)
S OI		C.	Select the sizes of angle gauges required to build (i) 37°9'18" and show the combi	ination.
oss line				(05 Marks)
l cre	4	a.	Explain the principle of autocollimator with neat figure.	(10 Marks)
gona od /c		b.	Describe the 3-wire method of measuring effective diameter of threads. Give th	e setup for
diag or an			the above.	(10 Marks)
raw				
ly d			DADT D	
sori l to	5	a.	PART – B Explain the generalized measurement system with block diagram. Give examples.	/40 WW
Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and or equations written eg. 42-48 = 50, will be a		b.	Explain with sketch the construction and working of an electronic transducer.	(10 Marks) (10 Marks)
ers,	6	a.	Describe in detail a ballast circuit.	(10 3/51)
ısw		b.	What are X-Y plotters? With a block diagram, explain its working.	(10 Marks) (10 Marks)
ur ar lent			The close diagram, explain its working.	(10 Mai K3)
ing you	7	a.C	With the help of neat sketch, explain the working principle of prony brake dynamo	ometer. (10 Marks)
omplet	No State of the St	b.	Explain the working of McLeod gauge with neat sketch.	(10 Marks)
my r	08	a.	With figure describe the construction and working principle of optical pyrometer.	(10 NA
7.7		b.	Describe the strain measurement by neat figure.	(10 Marks)
.:				(10 marks)
8			* * * *	
rtan				
odu				
==				

10ME42B/AU42B

USN

Fourth Semester B.E. Degree Examination, June/July 2016 **Applied Thermodynamics**

Time: 3 hrs.

Will

50, 42+8= remaining

60

the

on

Max. Marks 100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part.

2. Use of Thermodynamics Data Hand book permitted

Define the following:

equation.

i) Adiabatic flame temperature ii) Stochiometric air

iv) Enthalpy of formation v) Enthalpy of combustion.

Methane (CH₄) is burned with atmospheric air. The analysis of the products of combustion on a dry basis is as follows: $CO_2 - 10\%$ $O_2 - 2.37\%$ CO - 0.53% and $N_2 - 87.10\%$. Calculate the air fuel ratio and the percent theoretical air and determine the combustion

Explain the method of findings friction powerusing i) Morse test ii) Motoring test of an engine.

(10 Marks)

In a test of 4-cylinders, 4-stoke petrol engine of 75mm bore and 100mm stroke. The following results were obtained at full throttle at a constant speed and with a fixed setting of the fuel supply at 0.082 kg/min. BP with all the 4 – cylinders working = 15.24kW. B.P with cylinder No.1 cutoff = 10.45kW, BP with cylinder

No.2 cutoff = 10.33 kW, BP with cylinder

No.3 cutoff = 10.23kW, BP with cylinder

No.4 cutoff = 10.45kV

Determine:

The indicated power

ii) The indicated thermal efficiency, if CV of the fuel = 44mJ/kg.

iii) Relative efficiency based on IP is clearance volume in each cylinder = 115CC.

(12 Marks)

an expression for thermal efficiency of Dual cycle with PV and TS diagrams.

Ah engine operates on air standard diesel cycle. The pressure and temperatures at the beginning of compression are 100KPa and 27°. The compression ratio is 18. The heat added per kg of air is 1850kJ. Determine maximum pressure, Maximum temperature, thermal efficiency, network done and mean effective pressure of the cycle. Assume $\gamma = 1.4$ and $C_p = 1.005 \text{ kJ/kg K}.$

With T-S and schematic diagrams explain regenerative cycle with open feed water heater.

A 40MW steam power plant working on Rankine cycle operates between boiler pressure of 4MPa and condenser pressure of 10KPa. The steam leaves the boiler and enters the turbine at 400°C. the isentropic efficiency of the steam turbine is 85% determine:

i) The cycle efficiency

ii) The quality of exhaust steam from turbine

iii) Steam flow rate in kg/hr. consider pump work.

(10 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal

	TARI-D											
5 a.	Derive expression for the intermediate pressure which gives minimum power in a two stage											
	compressor with perfect inter cooling. (08 Mark)	3										
b.	A single cylinder, double acting air compressor is required to deliver 100m³/min of air at a											
100	mean piston speed of 500m/min measured at 1bar and 15°C. The air is delivered at 7 bar.											
OF THE BELLEVIA												
	Assume a clearance volume of $\frac{1}{15}$ th of swept volume per stroke. Find volumetric efficiency											
	His first to the control of the cont											
	speed, bore, stroke for the following two cases.											
	i) If ambient and suction conditions are same											
	i) If ambient and suction conditions are same ii) If ambient and suction conditions are different.											
	Assume, Ambient pressure = 1.0bar,											
	Ambient temperature = 15°C, Suction pressure = 0.98 bar. Suction temperature = 30°C											
	T C, Suction product visio car. Suprature vision production production of the composition											
	$\frac{L}{D} = 1.25 \tag{10 Marks}$											
	D	-										
c.	$\frac{L}{D} = 1.25$ Write the uses of compressed air. (10 Marks) (02 Marks)											
6 a.	Derive an expression for entingue program actifully bits aives maximum aposition work output											
	Derive an expression for optimum pressure ratio which gives maximum specific work output											
	in gas turbine considering machine efficiency. (06 Marks)											
b.	Explain the working of a ramjet engine with the help of a sketch. What are its advantages,											
	disadvantages and applications? (10 Marks)	-										
c.	Explain with neat sketch any one method to improve thermal efficiency of Gas Turbine											
	cycle. (04 Marks)											
	(64 //4////6)											
7 0	A refrigeration unit takes a Community and should be a topological and the second states and the second states and the second states are second states as the second states are second											
to man adver	A refrigerating unit takes air from a cold chamber at 5°C and compresses it from 1bar to											
	6.5bar. The index of compression is 1.25. The compressed air is cooled to a temperature	î										
	which is 10°C above the ambient temperature of 30°C before being expanded isentropically											
45/4	in an expander. Neglecting the clearance volume of compressor and expander. Find the COP											
	and the amount of air circulated in m ³ /min. If 2000kg of ice is to be formed per day at 0°C											
	from water at 25°C, what the tonnage of the unit? (12 Marks)											
b.	Draw neat PW and TS diagram for reversed Brayton cycle. (02 Marks)											
C.	Show that COP reversed Brayton cycle = $\frac{1}{\left[R_{p}^{\frac{\gamma-1}{\gamma}} - 1\right]}$	1										
	는 -											
	$ R_p^{\gamma}-1 $											

-	Where $R_p = \text{pressure ratio}$ $\left[R_p^{\frac{1}{\gamma}} - 1\right]$											
10	C											
17	$\gamma = \frac{C_p}{C_v}$, remains same during expansion and compression process. (06 Marks)											
11.	$c_{ m v}$	3										
2												
8 a.	With a neat sketch, briefly describe a summer air conditioning system. (08 Marks)											
h	D.C. d. CH : A DDM 'N C 'C' I III IN D I . I											
C.	Show the following processes on Psychrometric chart.											
	i) Sensible heating and cooling	-										
www.	ii) Cooling and dehumidification	-										
7-1-3	iii) Adiabatic mixing of two streams											
	iv) Heating and humidification. (06 Marks)											
	* * * * *											
	면 없는 아이들 마음 집에 가장 하는 것이 되었다면 하는 것이 없는 사람들이 되었다면 하는데 되었다면 하는데 되었다.											

TENT						
						HUNERIAU 44
CALV						A CLIVE NOT CITY OF MANY

Fourth Semester B.E. Degree Examination, June/July 2016 Kinematics of Machines

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART-A

- a. Define the following:
 - i) Kinematic chain
 - ii) Mechanism
 - iii) Structure
 - iv) Inversion
 - v) Degree of freedom.

(10 Marks)

(10 Marks)

- b. Describe with neat figures two inversions of double slides crank chain.
- a. With neat sketch, explain crank and slotted lever quick return mechanism.
- b. Explain the pantograph mechanism, with a neat sketch. State its applications.
 c. Draw a line diagram and explain peancellier's straight line mechanism.
- (07 Marks) (06 Marks)

(07 Marks)

- A four bar chain ABCD has a fixed link AD = 1 m. The driving crank AB = 0.3 m. The follower link CD = 0.6 m and the connecting link BC = 1.2 m. Find the velocity and acceleration of point 'P' midway between B and C, when the angle BAD = 135° and AB rotates clock wise at a speed of 300rpm with an angular acceleration of 20 rad/sec² in CCW direction.
- 4 a. State and prove 'Kennedy's theorem'.

(05 Marks)

b. In a reciprocating engine, the length of crank is 250mm and length of connecting rod is 1000mm. The crank rotates at an uniform speed of 300rpm in clockwise direction and the crank is inclined at 30° with inner dead centre. The centre of gravity of the connecting rod is 400mm away from the crank end. By Klein's construction determine: i) Velocity and acceleration of piston; ii) Angular velocity and angular acceleration of connecting rod and iii) Velocity and acceleration at the centre of gravity of the connecting rod. (15 Marks)

PART-B

- In a reciprocating engine length of crank is 250mm and length of connecting rod is 1000mm. The crank rotates at a uniform speed at 300rpm CW Crank is at 30° from IDC. Determine:
- i) Velocity of piston and angular velocity of connecting rod.
- ii) Acceleration of piston and angular acceleration of connecting rod by complex algebra method from first principal. (20 Marks)
- 6 a. State and prove law of gearing.

(06 Marks)

b. Derive an expression for path of contact.

(06 Marks)

c. A pair of spur gears has 16 teeth and 18 teeth, a module 12.5mm, an addendum 12.5mm and a pressure angle 14.5°. Prove that the gears have interference. Determine the minimum number of teeth and the velocity ratio to avoid interference. (08 Marks)

a. Explain epicyclic gear train with neat figure.

idhly confidential docume

(05 Marks)

- An epicyclic gear train consists of a sun wheel (S), a stationary internal gear (E) and three identical planet wheels (P) carried on a star shaped planet carrier (C). The size of different toothed wheels are such that the planet carrier C rotates at 1/5 of the speed of the sun wheel. The minimum number of teeth on any wheel is 16. The driving torque on the sun wheel is 100Nm. Determine:
 - i) Number of teeth an different wheels of train.

ii) Torque necessary to keep the internal gear stationary.

Draw the profile of a cam operating a roller reciprocating follower with the following data: 8 minimum radius of cam = 25mm; lift = 30mm; roller diameter = 15mm. The cam lifts the follower for 120° with SHM followed by a dwell period of 30°. Then the follower lowers down during 150° of the cam rotation with uniform acceleration and deceleration followed by a dwell period. If the cam rotates at a uniform speed of 150 rpm. Calculate the maximum velocity and acceleration of the follower during descent period. (20 Marks)

	-	11.10	Max. Marks: 100)
			Note: Answer FIVE full questions, selecting at least TWO questions from each part.	000
g blank pages. = 50, will be freated as molycostica	oo, will be licated as malpractice.	b	PART-A	(3)
in the remaining	2	U.	Explain the three zones of heat generation in metal entring. Briefly explain the desirable properties and purposes of cutting fluids. List the various methods of chip-tool interface temperature. Explain briefly tool wor thermocouple method of measuring it. (06 Marks)	s) s) k
nal cross lines o	3	а. Б.	Differentiate between Capstan and Turret Lathe. Explain with a neat sketch Crank and slotted link type of Quick return mechanism of shaper. Sketch planning machine and indicating major parts. (08 Marks	a a
 On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Anyrevealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be to 	4		Draw neat sketch of a radial drilling machine and indicating parts. Briefly explain absolute co-ordinates system and incremental co-ordinate system used in CNC. With simple sketches, explain the following processes: (i) Counter sinking (ii) Trepanning (06 Marks)) n)
	5		PART – B Draw a neat sketch of horizontal milling machine and indicating parts. (08 Marks) What is indexing? Name different methods of indexing. Briefly explain compound indexing method. (08 Marks) Differentiate between up milling and down milling. (08 Marks)	5
	10	b. c.	Explain the factors to be considered for selection of grinding wheels. Briefly explain external cylindrical centreless grinding with a neat sketch. Mention the advantages of same over centre-type grinding. Explain the following grinding wheel parameters: (i) GRIT (ii) Grade (iii) Structure.	
Important Note: 1.	Ĩ	a. b.	Explain orieny the Honing process with a neat sketch. State its advantages and disadvantages. (10 Marks) Explain with a neat sketch the Lapping process. State its advantages and disadvantages.	
Im	8	a.	With a neat sketch, explain the electric discharge machining	

a. With a neat sketch, explain the electric discharge machining.

processes.

b. With a schematic diagram, explain the ultrasonic machining process.

c. Differentiate between non-conventional machining process and conventional machining

Fourth Semester B.E. Degree Examination, June/July 2016 Wanufacturing Process - II

10ME/AU45

(08 Marks)

(08 Marks)

(04 Marks)

USN

Time: 3 hrs.

Fourth Semester B.E. Degree Examination, June/July 2016 Fiuld Mechanics

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART-A

- a. Explain the following fluid properties with relevant equations:
 (i) Bulk modulus
 (ii) Capillarity
 (iii) Kinematic viscosity
 (iv) Surface tension.
 - What is cavitation? Explain the importance of cavitation in the study of fluid mechanics.

C. A square plate of side 1 m and weight 350 N slides down an inclined plane with a uniform velocity of 2 m/s. The inclined plane is laid on a slope of 6: 8 and has an oil film of 1 mm thickness. Calculate the viscosity of oil. (08 Marks)

- 2 a. Explain the terms: (i) Total pressure (ii) Centre of pressure (iii) Pressure at a point.
 - b. A simple U-tube manometer containing mercury is connected to a pipe in which a fluid of sp.gr. 0.8 and having vacuum pressure is flowing. The other end of the manometer is open to atmosphere. Find the vacuum pressure in pipe, if the difference of mercury level in the two limbs is 40 cm and the height of fluid in the left from the centre of pipe is 15 cm below.
 - c. A circular plate of 3.0 m diameter with a concentric circular hole of diameter 1.5 m is immersed in water in such a way that its greatest and least depth below the free surface are 4 m and 1.5 m respectively. Determine the total pressure on one face of the plate and position of the centre of pressure.

 (10 Marks)
- a. A metallic body floats at the interface of mercury and water in such a way that 30% of its volume is submerged in mercury and 70% in water. Find the density of the metallic body.
 - b. A wooden block of size 3m×2m×1m and of specific gravity 0.8 floats in water. Determine its meta centric height. (05 Marks)
 - A fluid flow is given by $V = 10x^3i 8x^3yj$. Find the shear strain rate and state whether the flow is rotational or irrotational. (05 Marks)
 - d. The velocity potential is given by $\phi = x(2y-1)$. Calculate the value of stream function at a point (1, 2).
- a. State Bernoulli's theorem for fluid flow. Derive an expression for Bernoulli's equation from first principle. Also state the assumption made for such a derivation. (10 Marks)
 - b. A pipeline carrying oil of specific gravity 0.8 changes in diameter from 300 mm at a position A to 500 mm to a position B which is 5 m at a higher level. If the pressures at A and B are 1.962 bar and 1.491 bar respectively, and the discharge is 150 litres/s, determine the loss of head during the fluid flow. Also state the direction of the fluid flow. (10 Marks)

- a. When do you prefer orifice meter over a venturimeter? Why? (02 Marks)
 b. An oil of specific gravity 0.9 is flowing in a venturimeter of size 20cm×10cm. The oil mercury differential manometer shows a reading of 20 cm. Calculate the flow rate of oil through the horizontal venturimeter. Take discharge coefficient of venturimeter as 0.98. (06 Marks)
 - c. A rectangular channel 2 m wide has a discharge of $0.25 \text{ m}^3/\text{s}$, which is measured by a right-angled V-notch weir. Find the position of the apex of the notch from the bed of the channel if maximum depth of water is not to exceed 1.3 m. Take $C_d = 0.62$. (04 Marks)
 - d. Show by Buckingham's π -theorem that the frictional torque T of a disc of diameter D rotating at a speed N in a fluid of viscosity μ and density ρ in a flow is given by,

 $T = D^5 N^2 \rho \phi \left[\frac{\mu}{D^2 N \rho} \right].$

6 a. Explain the terms HGL and TEL in case of flow through pipes. (04 Marks)

b. List out the various frictional and minor losses occurring in a flow through pipes. Also write down the expressions for the loss of head in each of the above cases. (06 Marks)

c. A horizontal pipe line 40 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 25 m of its length from the tank, the pipe is 150 mm diameter and its diameter is suddenly enlarged to 300 mm. The height of water level in the tank is 8 m above the centre of the pipe. Determine the rate of flow considering all losses of head which occur. Take f = 0.01 for both sections of the pipe.

a. Explain the terms the critical Reynold's number, velocity gradient and pressure gradient with respect to a viscous flow. (06 Marks)

- b. Derive an expression for the velocity distribution for Hagen-Poiseuille flow occurring in a circular pipe. Hence prove that the maximum velocity is twice the average velocity of the flow.

 (10 Marks)
- c. Determine (i) the pressure gradient (ii) the shear stress at the two horizontal parallel plates for the laminar flow of oil with a maximum velocity of 1.5 m/s between two horizontal parallel fixed plates which are 80 mm apart. Take the viscosity of oil as 1.962 NS/m².

 (04 Marks)

8 a. Explain the terms: (i) Boundary layer thickness (ii) Displacement thickness (iv) Energy thickness. (06 Marks)

b. A flat plate 2m×2m moves at 40 km/hr in stationary air of density 1.25 kg/m³. If the coefficient of drag and lift are 0.2 and 0.8 respectively, find (i) the lift force (ii) the drag force (iii) the resultant force and (iv) the power required to keep the plate in motion.

(94 Marks)

Obtain an expression for velocity of the sound wave in a compressible fluid in terms of change of pressure and change of density. (06 Marks)

d. Calculate the Mach number and Mach angle at a point on a jet propelled aircraft which is flying at 900 km/hour at sea level where air temperature is 15°C. Take K = 1.4 and R = 287 J/kgK.
